——

AD-A215 423 i

DEVELOPMENT OF THE KALMAN FILTER
APPLICATION AND A VHDL MODEL
FOR THE AFIT FLOATING POINT
APPLICATION SPECIFIC
PROCESSOR (FPASP)

DTIC

&% CLECTE 3

THESIS

William E Koch
Capt, USAF

AFIT/GCE/ENG/389D-3

Approved for purlic releuset
Dismounea Unbmited DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Fam'mmou STATEMENT X ‘

Wright-Patterson Air Force Base, Ohio

89 12 14 007
e —————————————————

AFIT/GCE/ENG/39D-3

DEVELOPMENT OF THE KALMAN FILTER
APPLICATION AND A VHDL MODEL
FOR THE AFIT FLOATING POINT
APPLICATION SPECIFIC
PROCESSOR (FPASP)

THESIS

William E Koch
Capt, USAF

AFIT/GCE/ENG/89D-3

Approved for public release; distribution unlimited

AFIT/GCE/ENG/89D-3

DEVELOPMENT OF THE KALMAN FILTER
APPLICATION AND A VHDL MODEL
FOR THE AFIT FLOATING POINT
APPLICATION SPECIFIC
PROCESSOR (FPASP)

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Engineering

William E Koch, BSEE
Capt, USAF rh

December, 1989

Approved fcr public release; distribution unlimited

“Accesion For \
— R
nTis crent XY
DIl Tas 0]
Uoaneo, o 4 2}
Joastta gt o]
e T I
By . . - —
Distrib o !

Avad ity o e

P
b ——— — - s

re

Dist ;

Mo

Ul 1‘

Table of Contents

List of Figures

Table of Contents

Abstract . . . L e e e e e
L. Introduction L
1.1 Background
1.2 Problem Statemento oL
1.3 Scope e
1.4 Summary of Current Knowledge
1.5 Assumptions e e e
1.6 Approach e
1.7 Materials and Equipment
1.8 Sequence of Presentation

II. Problem Analysis

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Introduction

FPASP Applicability
FPASP Rapid Prototyping
Microcode Development
Microcode Verification and Validation . . .
Kalman Filter Microcode Translation . . .

Simulator Development

....................

...............

vi

viii

1-1
1-1
1-2
1-4

1-4

2-1

2-2

2-2

2-4

2-6

II.

Iv.

The FPASDP Aichitecture o v i e e e s s s s e e

3.1

3.2

3.3

3.4

3.5

Introduction e

FPASP Clock o

FPASP Register Types

FPASP Processing Components.

FPASP Microsequencer it

FPASP RTL Simulator e e e e e e e e e

4.1

4.2

4.3

4.4

4.5

Introduction e e e

RTL Simulator Requirements

Exteinal Tuterfaces e

RTL Simulator Development,

RTL Simulator Functional Description

4.5.1

4.5.2

4.5.6
4.5.7
4.5.8
4.5.9
4.5.10
4.5.11
4.5.12
4.5.13
4.5.14

4.5.15

Initialization

Drive Upper Busses:
Drive Lower Busses:

Barrel Shifter:

Upper ALU/SHIFTER Functions:
Lower ALU/SHIFTER Functions:

iii

4-1
4-1
4-3
4-4
4-7
4.7
4.7
4-8
4-8

4-10

4-10

4-10

4-14

4-15

Page

4.6 RTL Simulator Testing 4-15
4.7 FPASP RTL simulator Limitations 4-16
4.2 Using the FPASP RTL simulator 4-17
V. VHDL Simulator . . o 000 oo e 5-1
5.1 Imtroduction L 5-1
52 Whatis VHDL 0 o oo 5-1
5.3 VHDL Simulator Requirements 5-3
5.4 VHDL Simulator Development 5-4
5.5 VHDL Simulator Functional Descrintion o9
5.5.1 Two Phase Clock Model: 5-10

5.5.2 Upper Data Path Registers Model: 5-11

5.5.3 Louver Data Path Registers Model: 5-17

5.5.4 Control Section Model:, .. 5-17

5.5.5 Upper ALU/Linear Shifter Combination Model: 5-21

5.5.6 Lower ALU/Linear Shifter Combination Model: 5-24

5.5.7 Literal Inserter Model:, 5-24

558 DBus TiesModel: L L. 5-27

5.5.9 Function ROM Model: 5-29

5.5.10 Barrel Shifter Model: 5-31

5.5.11 Floating Point Adder/Subtractor Model: 5-33

5.5.12 Floating Point Multiplier Model: 5-35

5.5.13 External Memory Modeling:. 5-36

5.5.14 Top-Level Design Unit: 5-38

5.6 VHDL Simulator Testing 5-40

Page

VI. Kalman Filter Microcode Development 6-1
6.1 Introduction e 6-1

6.2 The Kalman Filter Algorithm 6-1

6.2.1 Initiel Data Structures: 6-2

6.2.2 Computed Data Structures: 6-2

6.2.3 Propagation Calculations 6-2

6.2.4 Update Calculations: 6-5

6.3 Microcode Development oL Lo 6-6

6.3.1 Memory Considerations: 6-6

6.3.2 Microcode Subroutines: L, 6-7

6.3.3 Propagation Routine:00 6-16

6.3.4 Update Routine:, 6-26

6.4 Kalman Filter Microcode Program Testing 6-31

6.4.1 Kalman Filter Microcode Program Verification: 6-31

6.4.2 Kalman Filter Microcode Program Validation: 6-31

VII. Conclusions and Recommendations C e 7-1
7.1 Conclusions e e e 7-1

7.2 Recommendations L0 oL 7-3

Appendix A. FPASP Microcode Fields Definitions A-1
Al Upper ROM Fields A-2

A2 Tower ROM Fields A-9

Appendix B. Entity Structure Diagram Syntax B-1
Bibliography e e e BIB-1
Vita . o e e e e VITA-1

List of Figures

Figure

3.1. FPASP Register-Level Description
3.2. FPASP Clock Cycle
3.3. Typical FPASY MS Flip-Flop
3.4. FPASP ALU and Linear Shifter
3.5. FPASP Function ROM
3.6. Floating Point Hardware Timing
3.7. FPASP Microsequencer i i e e
3.8 Microcode ROM Arrangement, .

3.9. Stack Architecture

4.1. RTL Simulator Sequencing e

4.2. RTL Simulator Flow Chart

5.1. Finai FPASP Floorplan oo
5.2. ASP_UPPER_REGS Entity Structure Diagram
5.3. Microsequencer Entity Structure Diagram
5.4. ALU/Shifter Entity Structure Diagram
5.5. Literal Inserter Entity Structure Diagram
5.6. Bus Tiec Entity Structure Diagram
5.7. Function ROM Entity Structure Diagram
5.8. Barrel Shifter Entity Structure Diagram
5.9. Floating Point Adder Entity Structure Diagram
5.10. Floating Point Multiplier Entity Structure Diagram

5.11. External Memory Entity Structure Diagram

6.1. Initial Memory Map

vi

6.2.
6.3.

6.4.

B.1.

Post Propagation Memory Map

Post Propagation/Update Memory Map
State Values Comparison

Covariance Matrix Cowpatison

Entity Structure Diagram Syntax

Vil

AFIT/GCE/ENG/35D

Abstract

The Air Force Institute of Technology (AFIT) is conducting research that will lead to the
development of a Floating Point Application Specific Processor (FPASP). The FPASP architec-
ture is designed around two independent 32 bit data paths that work in tandem to support full
IEEE double precision floating point operations, or that can work independently for 32 bit integer
processing. Designed to operate at 25 Mz, the FPASP will be capable of performing 25 million

floating point operations per second.

A rapid prototyping methodology has been developed for the FPASP. In this methodology,
a user identifies an application that could benefit from a VLSI solution. An algorithm of the
application is translated into FPASP microcode which can then be programmed into the Laser
Programmable Read Only Memory (LPROM) of a blank FPASP. The programmed FPASP can
then be mounted on a circuit card and installed in o host system where it would function as a

hardware accelerator supporting the user application.

This thesis supports AFIT’s continuing development of the FPASP in two areas. In the
first part of this thesis, a user application, the Kalman Filter algorithm, is translated into FPASP
microcode for programming into the FPASP. To support the microcode generation, verification,
and validation of the Kalman Filter microcode program, a software model of the register transfer
level design of the FPASP was developed using the C programming lanenage. The successful
developmient of the Kalman Filter microcode program demonstrated not only the FPASP’s abilities
toimplement a complex algorithm, but also the initial phases of the rapid prototyping methodology.
In the second part of this thesis, the feasibility of using the VHSIC (Very High Speed Integrated
Circuitry) Hardvare Design Language (“"HDI) to model a complete system is demonstrated by
developing a register transfer level model of the FPASP. Using the VHDL model of the FPASP,
it was possible to validate the design concepts used ia the development of the FPASP, as well as
providing support for architectural enhancements by allowing enhancements to be simulated prior

to fabrication changes.

viii

DEVELOPMENT OF THE KALMAN FILTER
APPLICATION AND A VHDL MODEL
FOR THE AFIT FLOATING POINT
APPLICATION SPECIFIC
PROCESSOR (FPASP)

[. Introduction

1.1 Background

The continuing advances in the field of Very Large Scale Integration (VILSI) circuit fabri-
cation have made it possible to place more circuitry on a single chip. Currently. chips are being
manufactured that contain hundreds of thousands of transistors giving the chips the capability to
perform functions that just a few short years ago would require a main-frame computer {Sumx1).
The resulting benefits of this advanced technology is that VLSI architectures can now be applied

to a broad spectrum of difficult problems. However, along with new solutions come new problems.

The specification, design, layout, verification, and fabrication of a custom VLSI chip can be
a very lengthy and costly process. The cost to design a custom VLSI chip can easily exceed a
million dollars, and the lead times required are two or more years. Lengthy lead times and high
costs compound the perceived risk of using custom VLSI architectures, causing many program
managers to hesitate before committing to a VLSI solution for their processing needs. Another
major difficulty with custom VLSI architectures is reliability. As the number of gates on a VLSI
chip increases, the testing problem increases exponentially and, unless careful steps are taken during

the design phase, it can quickly become impossible to achieve 100% fault coverage (Fuj85).

One approach that will make it easier to introduce VLSI architectures into a broad spectrum of
applications is being researched at the Air Force Institute of Technology (AFIT). AFIT is currently
developing the hardware and methodologies for rapid prototyping a user programmable, application
specific processor. The Floating Point Application Specific Processor (FPASP) currently under

development at AFIT will be capable of full IEEE double precision floating point multiplication,

1-1

addition. and subtraction. In addition to its floating point arithmetic capabilities, the FPASP will
provide two mutually exclusive, 32-bit, integer data paths (ComsR). Eacl integer data path will
contain separate sets of registers, an arithinetic logic unit (ALU). and a linear shifter giving the
FPASP the capability to perform parallel integer computations in any given clock cycle. The FPASP
will incorporate a laser programmable read-only rom (LPROM) developed in a thesis by Capt John
Tillie, based on research in laser technology at the Massachusetts Institute of Technology Lincoln
Laboratory (Til83) {Scr9). The LEPROM will enable a user to program the FPASP microcode
at some time after fabrication. In this sense. the FPASP can be manufactured en gross and
individual proressc.s programmed at later dates as specific applications warrant. Hence, a generic
VLSI architecture that has been thoroughly tested for functionality and reliability can be rapid

prototyped and applied to a broad spectrum of computationally intense problems.

Another area of ongoing research at AFIT is in the field of Kalman Filter design. The Kalman
Filter algorithm is characterized by the large number of matrix algebra computations it must
perform to arrive at an estimate of some values of intarest. Additionally, portions of the algorithm
require a high degree of numerical accuracy. These characteristics make the Kalman Filter algorithm
a likely candidate for implementation with the FPASP. Class projects have developed FPASP
microcode for the Kalman Filter. Student suggestions for improving the FPASP architecture to
better support matrix algebra computations were incorporated into the final design of the 'PASP
{Coma8) {Lin38). This should not however be construed to imply that the FPASP has been tailored

to fit one specific class of problems as will be explained later in this thesis.

1.2 Problem Statement

The design and development of the FPASP architecture has been topic of several theses
at AFIT (Gal87) (Com88) (Til88) (Scr89). This thesis further added to the development of the
FPASP in three areas. First, the Kalman Filter algorithm was translated into FPASP microcode.
The Kalman Filter microcode program will be thoroughly tested prior to release for programming
into the FPASP. Second, a means to quickly simulate the microcode was developed. As a functional
FPASP is not yet available, this required developing a register transfer level (RTL) model simulator,
based on the register level description of the FPASP, using a higher level programming langnage.

And third, the register level specification of the FPASP was modeled using the VHSIC (Very High

1-2

Speed Integrated Circuit) Description Language (VHDL) to aid in the validation of the architecture

design.

The Kalman Filter algorithm is being supplied by an outside user (AFIT Guidance and
Control Group) in the form of a series of lirearized mathematical equations, and higher-order
language routines (LcwR9) (May79). From these equatinns, high level psuedocode aigorithims will

be developed that can be mapped into FP/\SP microcode.

Fundamental to the development of the Kalman Filter microcaode is the ability to nxecute
the microcode to test for correctness. An RTL model simulator will be developed using the C
programming language that will allow the execution of FPASP microcode. The RTL simulator
functionally models all internal register states and all signals that cross internal blocks within
the chip. Additionally, the RTL simulator models the FPASP external memory which can be
analyzed after a simulation to verify and validate micrccode for logic correctness prior to FPASP

programming.

Several VLSI tools are available to test FPASP subcomponents at the transistor and gate
level. While validation at the component level is a must, it does not negate the requirement to
validate the design at the register level. VHDL provides the tools necessary to model register
level architectures, and simulate those models. In response to the reed to validate the FPASP
design at the register level, this thesis developed a hardware simulator using the VHDL design
language. The VHDL hardware simulator, or the VHDL simulator, provides the means to examine

the functionality and interaction of the individual FPASP components from a timing perspective.

At this point, the development of two simulators, botk capable of executing microcode. might
be questioned. A primitive model of the FPASP written in VHDL has shown that simulating
hardware systems can take a great deal of time. The initial study indicated that to simulate the
microcode for a 64-state Kalman Filter would require approximately two years to complete which
is clearly undesirable. The smallest Kalman Filter, four states, will require a full day to simulate
with a hardware simulator. True, VHDL hardware accelerators exist that can decrease simulatic
times by one or two orders of magnitude, but for the purposes of developing microcode, a decrease
of one or two orders of magnitude in simulation time is not sufficient. Hence, the need to simulate

developing microcode in a timely manner lead to the need for a simulator that simply tests for logic

1-3

correctness. Once the microcode has been thoroughly tested with the RTL simulator, the code can

be used in the simulated hardware environment with a reasonably good chance for success.

1.3 Scope

This thesis is bounded in both the type of problems to which it applies and to the solutions

it presents.

This thesis will examine the overall requirements for developing a microcode applicatiorns
program for the FPASP to include the development of a VHDL model for system level validation.
The development of microcode applications programs includes the requirement for some means to
execute the code in a timely manner. Additionally, the author makes no nretense to be an expert in
the field of Kalman Filters. Therefore the Kalman Filter algorithm should be completely specified
by a high-order language, pseudocode, linearized mathematical formulas, or some combination of

the three.

The development of the simulators to test the microcode and validate the system design
requires an in depth understanding of timing interrelationships, sub-module functionality, data

movement, and overall capabilities and limitations of the FPASP architecture.

1.4 Summary of Current Knowledge

An introduction to developing user applications into FPASP microcode was done as class
projects in the EE588 class during the 1988 summer quarter (Lin88). One of the assigned projects
was the translation of the Kalman Filter algorithm which was done in its entirety. The Kalman
Filter project, along with the other projects was done without the ability to test the microcode.
Despite this, many insights into microcode programming were gained in the exercises. In particular,
students made suggestions oa hardware changes that could enhance the operation of the FPASP,

and many of these suggestions were incorporated into the design.

The design of the FPASP evolved from the single precision ASP ‘SPASP) designed by Capt
Gallagher and Capt Linderman. The basic architecture of the FPASP is essentially two 32—bit data
paths working in tandem with double precision floating point macrocells, or working ». .arately to

perform integer operations and software support such as looping and branching (Com88). The

1-4

FPASP is designed using a bit slice methodology. Each microword consists of 128 bits divided into
upper and lower rom words. There are 41 instruction fields within each microword. An efficient
translation of a user algorithm will require effective utilization of each instruction field. Insight
gained from the EE588 class projects showed that the limiting factor in translating user algorithms
was the efficient utilization of the FPASP’s floating point hardware. As such, algorithms may
have to be completely redesigned from the perspective that a sequential approach to implementing
an algorithm may not be the best approach in the internal parallel environment of the FPASF

architecture.

1.5 Assumptions

The translation of the Kalman Filter algorithm and the development of both the logic and
hardware simulators is contingent on the stability of the FPASP microword format and the mi-
crocode field definitions. The format aud definitions of the microcode were developed and finalized
in Capt John Comtois’ thesis and the success of this thesis effort depends strongly on maintaining
the current microword configuration. Cursory reviews of the Kalman Filter algorithm indicate the
micrncode for the algorithm will be quite extensive. Any change in the microword format at this
stage of development could, and probably will, render the microcode unusable. The impact of
changed microword formats will ot impact the logic and hardware simulators to the same degree.
Therefore, if changes to the microword format are deemed necessary, these changes will have to

carefully coordinated to ensure the success of this research program.

This thesis also assumes that the register level design of the FPASP is complete and finalized.
Changes in the FPASP design at the register level will directly effect the usefulness of both the
RTL simulator and the VHDL simulator.

1.6 Approach

The primary goal of this thesis is successful development of the Kalman Filter microcode
program and the development of a VHDL model of the FPASP at the register level. Presently, no
means exists to execute FPASP microcode necessarily implying microcode development can not

be successfully effected until a software model of the FPASP is developed. And again, a reliable

1-5

software model of the FPASP can not be developed until the register level design of the architecture
is completely understood. An understanding of the architecture is also required for the development

of the VHDL hardware simulator.

This thesis will use a tiered approach starting with a thorough study of the FPASP architec-
ture itself. Particular attention will be paid to the movement of data throughout the FPASP and to
external memory. Next, the internal timing of the FPASP will be studied to gain an understanding

of the sequencing of internal operations and data movement.

After gaining an understanding of the internal operations and timing of the FPASP, the
design and development of the simulators can begin. The RTL simulator will address only the
interpretation of the microword and the logical flow of data through the FPASP. Any timing
considerations will deal only with the fact that certain operations must occur before others leaving

the magnitude of time delay for the VHDL simulator.

Once the RTL simulator been completed and sufficiently tested to give a reasonable degree of
confidence, the development of the Kalman Filter algorithm can begin. Previous experiences with
the EE588 class projects have shown that FPASP microcode development is an iterative process

concerned with efficiently using the FPASP resources and keeping the word count down.

After completing the Kalman Filter microcode program, the development of the VHDL sim-
ulator can begin. The VHDL simulator will develop models of each of the FPASP components,

and particular attention will be given to the inter-module and intra- module timing requirements.

1.7 Materials and Equipment

The development of the FPASP simulators will involve production of VHDL simulation mod-
els. Therefore, a VHDL analyzer and simulator will be required. The VHDL environment runs on
the VAX/VMS and SUN/UNIX computer systems. VHDL 1076, version 2.0, is currently available
on the AFIT VAX/VMS system and the AFIT SUN 3 systems operating under the UNIX V4.2

operating systems. Additionally, access to an AFIT SUN 3 workstation will be required.

1-6

1.8 Sequence of Presentation

Chapter 1 has provided background into the development and projected capabilities of the
FPASP. The chapter has gone into some detail analyzing the problems this thesis proposes address,

and the approaches that will be used.

Chapter 2 will present an analysis of the problems and requirements which effect the devel-
opment of the application development environment as well as the problems and requirements of

translating the Kalman Filter algorithm into FPASP microcode.

Chapter 3 will review and analyze the FPASP architecture to include a breakout ui tn indi-
vidual sub-modules, sub-module interconnectivity, data transfer timing, and the FPASP microword

and its associated microfield definitions.

Chapter 4 will detail the design and development of the C RTL simulator for the FPASP.

The chapter will also cover the limitations of the RTL simulator, as well as its benefits.

Chapter 5 will detail the design and development of the VHDL simulator for the FPASP. The
chapter will discuss each of the design entities developed to model the FPASP.

Chapter 6 will detail the translation of the Kalman Filter algorithm into FPASP microcode,

and will include explanations of how the validation and verification of the microcode was performed.

Chapter 7 will present conclusions related to the development of the Kalman Filter applica-

tion, and the VHDL simulator. Also, recommendations are made for follow on studies.

[I. Problem Analysis

2.1 Introduction

The current state of integrated circuit technology allows the application of VLSI architectures
to a broad range of difficult problems. Many research efforts throughout the Department of Defense
(DoD) require special purpose processors and controllers, however the long lead times and high
costs have tempered the application of advanced VLSI architectures (Sum81). AFIT recognizes
this problem and has proposed an alternate approach to developing a specific architecture for a
specific application. The approach proposed by AFIT is the development of a user programmable,
application specific, processor (Gal87) (Com88). AFIT has undertaken a research program that will
provide the methodologies to rapid prototype application specific processors which will culminate

with the development of the FPASP.

Currently, the register level design of the FPASP architecture is complete, and the final design
and testing of the individual macro-cells is nearing completion. This chapter will review the overall
FPASP rapid prototyping scenario, and discuss and analyze the requirements for developing and

testing FPASP microcode.

2.2 FPASP Applicability

The FPASP has been optimized to support computationally intensive applications. Appli-
cations that cannot be specified algorithmically, such as word processors, or which have special
hardware requirements beyond those provided by the FPASP architecture may not be good candi-
dates for this rapid prototyping methodology. The FPASP has been specifically designed to support
matrix algebra in which the most basic operation is the dot product of two vectors. To support
an effecient dot product routine, the hardware design of the FPASP architecure has been refined,
as results of EE588 class projects feedback, to perform the basic operations of multiplication and

addition in as few clock cycles as possible.

The optimized design of the FPASP architecture to allow efficient matrix algebra operations
does not limit the usefulness of the FPASP to a particular subset of applications. EE588 class

projects effectively developed microcode for a variety of applications. The class projects that

2-1

were successfully completed are: Kalman Filter propagation and update routines; Neural Network
Training, where forward and backward propagation algorithms were translated into microcode;
LMS Adaptive Filtering, which includes a microcode version of the dot product routine applicable
for complex data vectors; LOG base 2 and ArcTan(), which used the Chebychev polynomials was
translated into microcode; and Singular Value Decomposition (SVD) translated a Fortran routine
for SVD into microcode. The EE588 class projects demonstrated the versatility and brozd range

of applications the FPASP is well suited for.

2.3 FPASP Rapid Prototyping

The rapid prototying methodology for the FPASP has been designed to make it easy insert
the FPASP into wide range of applications. After a user has identified an application that could
benifit from the capabilities the FPASP offers, an algorithm of the application is translated into
FPASP microcode. After the algorithm is transiated into FPASP microcoue, the microcode is
verified and validated, and then programmed into the LPROM. The FPASP is then mounted on a

circuit board, tested, and interfaced into the user’s application.

It is expected that microcode development will consume the majority of the time required to
prototype the FPASP. There are two ROMs into which the microcode will be written. The first
ROM is the LPROM which has already been discussed, and the second ROM is a fixed ROM which
will contain a library of microcode subroutines. The microcode subroutines that will be placed in
the fixed ROM during manufacture are matrix multiplication, matrix addition, square root, and
Newton Rasphon Inversion. The use of these fixed subroutines should ease the translation of a user

algorithm into FPASP microcode.

2.4 Microcode Development

A user algorithm, whether it is in a higher—order language form, pseudocode, or linearized
mathmetical formulas, tends to be sequential in nature in that one subset of the algorithm is
performed in its entirety before progrssing onto next subset. While a straight translation of such
an algorithm into microcode is possible, such a translation would in all likelyhood be inefficient. As

previously noted, the FPASP microword is comprised of 41 individual microfields allowing for the

2-2

parailel operation of many internal FPASP functions. Translating a user algorithm into microcode
must take this capability into consideration if the resultant translation is to effectively and efficiently
utilize the FPASP to its fullest extent. Parallelizing the internal operations of the FPASP does
not imply the possiblii, of subdividing the user algorithm into individual tasks that can process
concurrently. Rather, parallelizing FPASP internal operations implies that while one portion of
the algorithm is being processed by the FPASP, hardware not currently involved with the current
processing is working to intialize registers, ALUs, shifters, etc. for the next portion of the aigoiithm

to be executed.

For example, the current portion of the user algorithm being executed by the FPASP is
a loop that will perform n iterations. In each iteration of the loop, a subroutine will be called
to calculate the dot product of two vectors, after which the dot product is scalar multiplied and
written out to memory. The dot product routine requires several general purpose registers, pointers,
and incrementers to be preset prior to the subroutine call. The microcode could be written in a
purely sequential fashion to first intitialize the necessary registers, pointers, and incrementers, call
the dot product routine, perform the scaiar multiplication, and write the result out to memory.
In this approach, several lines of microcode would be required solely to initialize resisters and
pointers. Assuming it requires z lines of microcode to perform the intializations, this method of
translation would add an additional zn clock cycles of overhead to the algorithm. A more efficient
alternative, which emphasizes the concurrent abilities of the FPASP, would be to intialize the
registers, pointers, and incrementers for the first call to the dot product routine prior to entering
the loop, and performing subsequent initializations concurrently with the scalar multiplication and
memory I/O. This approach at worst will add only z clock cycles for the first intitialization, yet
will save z(n — 1) clock cycles incured in the previous serialized translation. An even more judicious
approach might find it possible to perform the first initialization concurrently with the operation

leading up to the loop eliminating the need for the z extra clock cycles.

r.qually important in developing efficient microcode programs is the full utilization of the
FPASP’s dual integer data paths. Manipulation of matrix data structures within the FPASP
requires numerous integer computations which are used for indexing, and column and row counters.
While one data path is computing the number of elements within a matrix data structure, the other

data path can concurrently compute the distance between the row or column clemente of the came

2-3

structure.

2.5 Microcode Verification and Validation

The previous section highlighted some of the requirements for developing efficient microcode.
An important step in developing microcode is the ability to verify portions of the code as it is being
generated. There are two distinct aspects of the microcode or submodules of the microcode that
need verification. The first is verification of logic correctness. Logic correctness ensures all general
purpose registers, pointers, loop counters, and incrementers have been properly intialized when they
need to be intitialized, and that the routine executes properly. The RTL simulator discussed in
Chapter 1 will be able to perform this verification. The second is verification that internal FPASP
timing requirements have been mei. The internal operations of the FPASP have been designed to
occur in one clock cycle. The exceptions are the operations of the floating point multiplier and
floating point adder. Both these circuits have a latency of three clock cycles with a two cycle
execution. Additionally, flags set as a result of ALU and shifter operations incur a one clock cycle
delay and are therefore valid in the clock cycle following an operation. Flags associated with the
floating point hardware aren’t set until the data is driven out of the floating point hardware, and,
as with the ALUs and shifters, can’t be read until the following clock cycle. The VHDL hardware
simulator will have the ability to model the FPASP timing element, and therefore will provide the

means to verify the timing aspects of microcode applications.

Validation of microcode entails testing to ensure the developed microcode does in fact im-
plement the user algorithm it was designed for. Validation therefore necessarily implies simulating
the microcode routine with a user supplied data set, and comparing the simulated results against
known valid results. With the Kalman Filter algorithm, this will necessitate being able to simu-
late the microcode with fairly large data sets, and performing the simulation a number of times to
propagate and update the data. A final review of the output data will insure that the microcode im-

plementation of the Kalman Filter is correctly performing the time propagations and measurement

updates correctly, and not causing the data to diverge from a user supplied truth model.

ﬂ Kalman Filter FPASP Performance J
N M S P X AT

] states | measurements | noises | controls | terms || msecs
64 32 32 16 1 502

[64 32 32 16 2 528
40 20 20 0 1 125
40 20 20 0 2 131
20 6 6 (] 1 15
20 6 6 0 2 16
16 1 6 0 1 6.9
16 1 6 0 2 7.4

Table 2.1. EE588 Kalman [ilter Class Project Results

2.6 Kalman Filter Microcode Translation

The main benifits of implementing the Kalman Filter with the FPASP is speed of computation
and precision of calculations. The high precision of calculations is gained by using a processor
capable of double precision IEEE floating point operations. Speed of computation is dependent on
not only the speed of the hardware, but also on the cleverness of the microcode development as
discussed above. Although no specific requirements for execution speeds have been levied on this
research project, the quicker the FPASP can perform the Kalman Filter time propagations and

measurements updates, the more dynamic the environment the system can operate in.

The EE588 Kalman Filter class project provided some insight iuto the expected performance
of the FPASP when applied to the Kalman Filter problem, and the results are given in Table 2.1
(Hus88). The times given are for a complete propagation and update of the Kalman Filter. These
times are however far from optimal. Referencing the first table entry, the total number of clock
cycles required for a complete propagation and update are 12,543,132, and the total number of float-
ing point operations are 3,529,726 which yields 7.04 MFlops/sec out of a maximum 25MFlops/sec.
Optimization of the Kalman Filter microcode will require a complete restructuring of the current
microcode, and for this reason, it was deemed appropriate to scrap the microcode and rewrite it.
An additional factor which weighed heavily in the decision to scrap the original microcode was the

fact that the microcode was written using the original (now outdated) version of the microcode.

2-5

2.7 Simulator Development

The development of the FPASP simulators approach the architecture from two distinct view
points. The logic simulator views the FPASP architecture as a collection of functions that can be
modeled using subroutines. Execution of any given function during a simulation cycle is dependent
on the ROM word micro—field controlling that function, and the current phase of the simulation
cycle. This implies that subroutines developed to emulate the functions of the FPASP will have
to be sequenced in the correct order according to when in the simulation cycle they must occur.
The VHDL hardware simulator will model the FPASP in an entirly different way. Design entities
will be designed and developed that model the behavior of each FPASP component at the register
level. Each design entity will then be invoked concurrently according to an internal clock that
models the FPASP’s external clock. The execution a design entity is aiso dependent on the ROM
word micro—fields governing the particular design entity. In both cases, the development of the
simulators is highly dependent on understanding the internal timing of the FPASP in addition to

understanding the functions of the individual components.

2-6

I[II. The FPASP Architecture

3.1 Introduction

Prinr to any development of the FPASP logic and hardware simulators, and the development
of any microcode, a complete understanding of the FPASP architecture is needed. This chapter
examines the architecture and internal timing of the FPASP. The chapter will start by providing
an overview of the FPASP architecture and will then examine the individual modules which go

together to comprise the overall FPASP.

FPASP Architecture Overview: The FPASP is a laser programmable VLSI processor which
will interface to a host computer system. The data paths shown in Figure 3.1 depicts the FPASP as
two tightly coupled 32 bit integer processors which together feed the floating point macrocells that
perform IEEE standard double precision floating point multiplication and addition/subtraction
operations. Special floating point hardware allows these operations to be performed with a latency
of three clock cycles {load, compute, drive) but with a throughput of two clock cycles (loading and

driving may be overlapped).

The 32 bit integer data paths are mirror images of each other with a few exceptions. Each
has a 32 bit integer arithmetic logic unit (ALU) and linear shifter which can perform independently
of one another, 25 general purpose registers which can store intermediate integer results or half of
a floating point operation result, three incrementable registers with auto—increment capability to
hold loop counter variables, one memory buffer register (MBR) which connects through a D Bus
to its respective memory bank, two external memory pointer registers (A,B,C, and D ptrs) with
associated increment registers (A,B,C, and D INCR) that can be preset with a desired increment
amount, and one memory address register (MAR) with auto—increment capability. The upper 32
bit data path contains a Function ROM which is programmed with fixed values used as seeds for
iterative routines. The lower 32 bit data path contains a Barrel shifter for shifts longer than one
bit. Common to both data paths is the Literal Inserter which allows for the direct insertion of
variables from the microcode onto the busses. Finally, all of the data busses are interconnected

through Bus Ties that allow values driven on one bus to be driven onto their counter part busses.

A A
B . . 1
C Floating Point Multiplier C
Floating Point Adder/Subtractor N
— e
Literal
Insert
Barrel
unct ROM ‘ Shifter |-
Shifter 4 ALU micro ALU = Shifter—={ | 82
[Contral
ROLA Register
INC1 bits - INC1
INC2 - INC2
INC3 A INC3
R25 \ t R25
. , -—
D R2 tie R2 D
. / = R1
< MBR | MBR Ef ‘
B B
A incr incr A
A pt. -
ptr L—t tie |4 ptr A
——
+
B ptr — ptr B
B incr A A incr B
ADDR | MAR tie | MAR ADDR
E E
tie
C o C
Upper Externall ypper datapath Lower datapath Lower External
Memory Bank (F.P. MSBs) (E.P. LSBs) Memory Bank
(odd host addresses) REV 3.0 (even host addresses)
l 30 November

Figure 3.1. FPASP Register-Level Description

3-2

Precharge Combinational logic
settling time

B f) /L

2 / Y

Drive data Drive data onto Latch data
out of precharged into registers
registers busses

Figure 3.2. FPASP Clock Cycle

Controlling the operation of the FPASP and not shown in Figure 3.1 is the microsequencer. A full

discussion of the microsequencer will be provided later in this chapter.

The following sections will describe in some detail the operation of each of the individual sub-
components that go together to make the FPASP. Prior to any in—depth discussion on component
structure and characteristics, it is first necessary to 1iscuss the timing of data transfers within the

FPASP.

3.2 FPASP Clock

The FPASP is designed for a clock speed of 25Mhz with its corresponding period of 40ns. As

shown in Figure 3.2, the clock is comprised of two non—overlapping clock signals ¢, and $;.

The FPASP uses master—slave (MS) fliy -lcpe throughout its architecture to prevent the
condition known as data racing. Data racing occurs when a D flip—flop is enabled and before its

data input can be disabled, the input changes. As a consequence, the latched value is not the correct

3-3

Basic Master-Slave Flip-Flop

Figure 3.3. Typical FPASP MS Flip-Flop

value. MS flip—flops use two ganged D flip—flops to trap the data by enabling each D flip—flop at
different times. A typical MS flip—flop that is used in the FPASP is depicted in Figure 3.3.

With the rising edge of ®,, the input flip—flop is enabled and the output of the input flip—flop
is free to follow the changing conditions on the bus. When ®; falls, the input flip—flop is disabled
latching whatever value was on the bus at that time. A short time later, the rising edge of ¢,
enables the output flip—flop and the latched value in the input flip—flop can now be sensed at the

output of the register. The out_ut of the register is latched with the falling edge of @;.

3.3 FPASP Register Types

There are five distinct register types used in the FPASP all of which use the MS flip—flop
configuration described above. The different register types listed in the order they will be discussed
are: the general purpose registers; the incrementable registers; the pointer registers; the memory

buffer registers; and the memory address registers.

General Purpose Registers: Both the upper and lower data paths contain 25 general purpose
registers. Each general purpose register is made up of 32 individual MS flip~flop macro—cells
corresponding to the 32 bit~width of the busses. Data stored in the general purpose registers are
driven onto precharged A or B busses with the rising edge of ®,. New data is latched into the

general purpose registers from the C bus with the falling edge of ®..

There are two micro—fields within the microword for each data path controlling which register

is driving the A bus and which register is driving the B bus. It is therefore possible to have the

3-4

same register drive both busses. There is also a single micro~field for each data path to determine

which register is loaded from the C bus. Only one register can be loaded at a time.

Incrementable Registers: Each data path has three incrementable registers specifically de-
signed to hold loop counter variables. Each incrementable register lias the associated hardware
necessary to give them an auto—increment capability. Additionally, each incrementable register
has a zero flag that can be tested the clock cycle after an increment instruction to determine if
the register has incremented to zero. To control the number of iterations through a loop. an in-
crementable register is loaded with the negative number of times the loop is to be traversed. The
incrementable register is incremented with each iteration through the loop and the loop is exited

when the appropriate zero flag is set.

There is a single micro—field within the microword for each data path which controls incre-
menting the registers. Control of loading the incrementable registers is contained within the same

micro—fields that control loading the general purpose registers.

Pointer Registers: The pointer registers are designed to directly support addressing the
individual elements of a matrix. Two dimensional matrices are generally stored in memory in
row—major format. To address successive column elements of a matrix is a simple matter of in-
crementing a memory pointer by one. However, to address successive row elements of a matrix,
it is necessary to increment the memory pointer by the row dimension of the matrix. Each data
path has two independent pointer registers, and each pointer register has an associated increment
register and adder to make the increment. The pointer register is loaded with an initial value and
its associated increment register is loaded with an increment value (positive or negative). With
every microcode instruction encountered to increment the pointer, the pointer value is incremented

(or decremented) by the value contained in its increment register.

Loading the pointer registers is again controlled by the same micro—-field as the general
purpose registers. However, there is a dedicated micro—field for each data path to control loading
the associated increment registers and the incrementing of the pointers. Both the pointers and
their increment registers can be loaded at the same time. However, since there is only one C bus

for each data path, unless it is desired to load the same value, separate clock cycles are needed to

3-5

load different values.

Memory Buffer Registers: The memory buffer registers (MBRs) are similar to the general
purpose registers. The MBRs drive data to the data pads of the FPASP via the D bus. Originally
intended to be the only registers to read data in through the data pads, the role of the MBRs was
extended to include both the upper and lower general purpose registers R1 and R2. Writing data
out through the data pads requires writing the data into the MBRs and lowering the Write Enable

signal lines.

There are four micro—fields that control the flow of data through the MBRs. The same three
micro—fields that control driving out of the general purpose registers onto the A or B bus and
driving data into the general purpose registers from the C bus also control the MBRs in the same
fashion. There is an additional micro—field that controls driving data out of the MBRs onto the
D bus.

Memory Address Registers: Addressing of external memory is controlled by a memory address
register (MAR) in each data path. Each MAR has an auto—increment capability. The normal
source for loading address values into the MARs is from the pointer registers via the E bus.

However, the MARs are also connected to the C bus allowing any register to hold an address.

There is single micro—field for each MAR that controls whether the MARs are loaded from

the E bus or the C bus or if their present values are incremented by one.

3.4 FPASP Processing Components

The FPASP has seven processing components working together that support three types of
computation: logic operations, 32 bit arithmetic, and IEEE standard double precision floating
point arithmetic. In addition to the above computations, the FPASP also supports a 32 bit integer
multiplication option using the floating point multiplier. The processing components that will be
discussed in this section are: the integer arithmetic and logic units (ALUs), the linear shifters, the
barrel shifter, the literal inserter, the function ROM, the floating point multiplier, and the floating

point adder/subtractor.

3-6

I FPASP ALU Logic Operations ' 1
Function | Value Passed to Shifter Flags Affected
CARRY,OVERFLOW,SIGN,ZERO
MOVN A none (default)
OR A ORB ZERO
AND A AND B ZERO
XOR A XOR B ZERO
MOV A ZERO
NAND A NANDB ZERO
NOR A NORB ZERO
NOT NOT A ZERO
INC A+0+1 All Four
SET A+B+1 All Four, Sets Carry
ADC A 4+ B + previous carry All Four
ADD A+B+0 All Four
NEGA A+B+0 All Four
SUB A+B+1 All Four
SWB | A + B + previous borrow All Four
DEC A+1+40 All Four

Table 3.1. FPASP ALU Operations

Integer Arithmetic and Logic Units (ALUs): The FPASP has two independent ALUs, one on
each data path. The ALU functions supported by the FPASP are listed in Table 3.1,

As illustrated in Table 3.1, the two ALUs generate separate flags which are stored in MS
flip—flops that can be used as branch conditions by the 1 :rosequencer. The MS flip—flops add a
one clock cycle delay from the time the flag is generated until it can be used by the microsequencer
for branching instructions. These flags as well as the interconnectivity of the individual coinponents

that comprise the ALUs are shown in the block diagram in Figure 3.4.

Bidirectional Linear Shifter: The bidirectional linear shifter is depicted in Figure 3.4. The
result of an ALU operation is fed directly through the shifter to the C bus. The linear shifter can
perform one bit shifts in either direction. The type of shifts that the linear shifter can perform are

listed in Table 3.2.

The linear shifter is capable of performing arithmetic shifts, logical shifts, circular shifts,

and shifts using bits stored from previous ALU operations. The bit shifted out is saved in a MS

3-7

f*— seiB

$S6IA ——ee—pf selBObar

selAbar “Sye— s0lB0
S j—— seiB1
FLAGS
from logic also _gy) Z
cY]
: selOR
SeiADD R selXOR
R $elAND
SHL SHG
SHN SHR

out SHLe{ 2:1 |= SHR

¥ CBUS

Figure 3.4. FPASP ALU and Linear Shifter

3-8

u Bidirectional Linear Shifter Operations ﬂ
ﬂ Function] Type of Shift] Bit Shifted In ﬂ
NOP Shifter does not drive C bus none
GNDC Shifter grounds C bus none
PASS No shift, ALU output to C bus none
SLOT Chained left shift Previous shift—out bit into LSB
SLMS Circular left shift MSB circulated into LSB
SLCY Shift left with CARRY CARRY of present ALU operation
SLo Shift left with zero 0 into LSB
SL1 Shift left with one 1 into LSB
SRLS Circular right shift LSB circulated into MSB
SRCF | Shift right with previous CARRY CARRY tlag into MSB
SRS Shift right with previous SIGN SIGN flag into MSB
SROT Chained right shift Previous shift—out bit into MSB
SRSE Arithmetic right shift MSB extended
SRCY Shift right with CARRY CARRY of present ALU operation
SRO Shift right with zero 0 into MSB
SR1 Shift right with one 1 into MSB

Table 3.2. FPASP Linear Shifter Operations

flip—flop, and can be chosen as the shifted in bit at the next clock cycle or as a condition flag by the
microsequencer during the next clock cycle. The chained interconnection of the ALU and the linear
shifter places a dependency on the independent operations the two components. To use the ALU
and have its results driven out onto the C bus, the linear shifter PASS function must be selected
during the same clock cycle as the ALU function is being executed. Likewise, the ALU must not
be selected (the default is MOV which passes the contents on the A bus through the ALU to the

shifter) during the same clock cycle the shifter is functioning.

Barrel Shifter: The Barrel Shifter was designed into the FPASP to facilitate left circular
integer shifts greater than one bit. The number of bit positions the Barrel Shifter can shift an

input variable during one clock cycle can be selected from 1 to 31 bits from two different sources.

One source that can be used to control the number of shifts the Barrel Shifter performs is the
Barrel Shifter control register. The control register for the Barrel Shifter can be loaded directly
from the microcode, or from the five least significant bits (LSB) of the C bus in the lower data path.

Taking the control input directly from the C bus provides a means to control the length of the shift

3-9

based on a previous calculation. The Barrel Shifter control register is a five bit MS flip—flop and

therefore the control register must be loaded the clock cycle prior to the shift operation.

The Barrel Shifter can be made to perform linear shifts. A mask is inserted onto the lower
data path A bus using the literal inserter (explained below) at the same time the integer to be
shifted is driven onto the bus. The mask inserts zeros on top of the integer bits that would be
circularly shifted back into the LSB with the results effectively mimicking a left linear shift. The
entire operation as before can be performed in one clock cycle. Unlike the linear shifter discussed

above, the Barrel Shifter cannot pass its input unchanged through to the C bus.

Literal Inserter: The literal inserter provides the FPASP with the capability to insert data
onto either the upper A bus or the lower A bus or both directly from the microcode. This effectively
allows integer constants to be stored imbedded in the microcode rather than in memory. The size
of the microcode literal field is 16 bits allowing only half of a 32 bit word to be introduced at a
time. The versatility of the literal inserter allows those 16 bits to be inserted in the lower half of
the word while zeroing out the upper half, or inserted in the lower half while leaving the upper half
unchanged, or inserted in the upper half zeroing out the lower half, or inserted in the upper half

while leaving the lower half unchanged.

Function ROM: The function ROM consists of seven pages of laser programmable ROM
with each page consisting of 32, 5—bit words. The purpose of the function ROM is to provide fixed
storage for seed values that is user programmable. The block diagram of the function ROM given
in Figure 3.5 shows the ROM takes three control bits from the microcode selecting one of seven

memory pages, and five bits from the datapath to index into the chosen memory page.

The function ROM directly supports recursive floating point routines requiring seed values
such as inversion or square root routines that are based on the Newton—Raphson Convergence
Theorem. Referring to Figure 3.5, a page ¢ seed values is selected using three control bits from
the microcode word. The particular seed value within the page is selected using the four MSBs of
the mantissa and LSB of the exponent of the number that is being operated on. The output of the
Function ROM is placed directly on the C bus and consists of the four MSBs of the mantissa and

the LSB of the exponent of the seed value.

3-10

To upper C bus

mantissa MSBs exponent

F:ﬁ: LSB
{ 7:1 Muxes
Control bits Sense Amps
2:1 MUXes

adar | T PROM

decode
PLAs 32x Sbitsx 7

e
Mantissa MSB's

i— AQ drivers

Exponent LSB
NOP

Figure 3.5. FPASP Function ROM

3-11

Registers drive data, new control bits sent out by pipeline
End of precharge
/ Registers latch data
%[] [[(] B
%, / / J J J -
S~

. I TN r~
Initial
Load Settling Time Settling Time

Begin C bus drive
Begin B bus drive

Begin Calculation
Latch in next operands

Figure 3.6. Floating Point Hardware Timing

FPASP Floating Point Multiplier: The FPASP floating point multiplier is a single combi-
national logic circuit designed to implement the octal Booth’s encoding scheme. The gate delays
through long combinational paths requires that the multiplier be given two clock cycles for settling

time as shown in Figure 3.6.

The floating point multiplier supports muitiplication of IEEE standard floating point num-
bers. This numbering notation uses 64 bits where the lower 52 bits represent the mantissa of the
number, bits 63 downto 52 are used to represent the exponent, and bit 64 is the sign bit. The
FPASP manipulates this 64 bit number representation by splitting the number in half with the
lower 32 bits on the lower data path and the upper 32 bits on the upper data path. Loading the
floating point multipliers input registers requires the use of both upper and lower A and B busses.

Once the input registers are loaded, the computation of the floating point product proceeds by

default unless an integer multiply has been explicitly requested. Two clock cycles later, a valid
result is available at the output of the multiplier. The ouiput of the multiplier can be driven either
onto the C busses or onto the B busses. The ability to drive the results onto the B busses gives
the FPASP the capability to load the multiplier or the floating point adder/subtractor on the clock
cycle the result is valid versus the intermediate step that would be required to drive the results

into a register from the C bus and from the register to the B bus.

The floating point multiplier supports the IEEE double precision floating point format that
requires the multiplier to flag abnormal conditions. The conditions flagged by the multiplier are
underflow, zero result, denormalized result, overflow, and a result that is not a number. As with
all the flags discussed so far, these flags are available to the microsequencer so that conditional
branches can be made to exception handlers. In addition to the single flags generated by the
multiplier, the overflow and not—a—number flags are OR’d together along with the overflow and
not—a—number flags from the floating point adder and the upper and lower alu overflow flags into a

single flag called TRPS. This flag is also available to the microsequencer for conditional branching.

The floating point multiplier also performs 32 bit integer multiplication. The integers to be
multiplied are driven into the multiplier from the lower A and B busses. The result, if it is less
than 32 bits can be driven out onto the lower C and or B busses. If the result is greater than 32
bits, the 32 LSBs are driven onto the lower C and or B busses as before, and the 32 MSBs are

driven onto upper C and or B busses and the overflow flag is raised.

FPASP Floating Point Adder/Subtractor: The floating point adder/subtractor, as the float-
ing point multiplier, supports the addition or subtraction of IEEE standard double precision float-
ing point numbers. The interface to the floating point adder/subtractor is identical to the floating
point multiplier. The microword contains a dedicated microfield for the control of the floating point
adder/subtractor enabling the adder/subtractor to operate independent of the multiplier. Similar
to the operation of the multiplier, once the adder/subtractor input registers are loaded, floating
point addition occurs as the default. To perform floating point subtraction, the subtractor must
be selected at the time of the input registers initialization, and then on the following clock cycle,

an implicit subtraction must be requested.

3-13

3.5 FPASP Microsequencer

The lnieinad sequeading of events of the FPASP is coiirclled by a microcode sequencer. The
ma jor components of the microsequencer are depicted in the block diagram shown in Figure 3.7 and
consist of the pipeline registers, the microcode ROMs, the microaddress stack, and the condition

multiplexer. This section will examine each of these components.

Microinstruction Pipeline: The storage of microcode in the FPASP is done in two seperate
ROM:zs as previously discussed. There is the fixed ROM which stores microcode subroutines designed
to be called by user microcode routines that were programed into the LPROM. The outputs of the
ROMs are driven into the inputs of the pipeline registers on one clock cycle and driven out of the
pipeline registers to the datapath hardware on the next clock cycle. The one clock cycle ensures
the control bits passed to the datapath hardware are stable for the entire length of the clock cycle
allowing sufficient time for decoding. The control bits are driven out to the datapath hardware

with the rising edge of ;.

Microcode ROMs: The purpose of the microcode ROMs, fixed ROM and LPROM, have
already been discussed in some detail. Asillustrated in Figure 3.8 these two individual ROMs share

a contiguous address space and are treated as a single microcode ROM by the microsequencer.

The microcode memory is organized as 784 words deep by 128 bits wide. There are two halve
to each microcode ROM, each one 64 bits wide. There are 640 words of fixed ROM and 144 words
of LPROM. The address lines to the two ROMs are decoded to determine which microcode word

is read and from which ROM it is read from.

Microaddress Stack: The FPASP is supplied with a microaddress stack allowing subroutine
and recursive subroutine calls. The stack has enough registers to support nested subroutine calls
16 deep. As shown in Figure 3.9, should an address be pushed onto the stack when the stack is
full, the bottom of the stack is pushed out into external memory starting at memory location zero.
The stack pointer generates the addresses used to read and write the internal stack contents from

external memory.

3-14

Either R1 as ‘IR’

GO

To

Macro
Salect

t =

Pipeline Registers

Data
Pads

STACK

From
Data
Pads

Condition

Lower R1 as ‘IR’

Figure 3.7.

OPCODE

seiMAP

STKtrap

FPASP Microsequencer

3-15

“Qp -

[R e— Al
A

pid; XROM f,ﬁir
9 ————4— 2:1 MUXes

‘ Sense Amps “
8 8 +(9 7 2:1 MUXes

A
° _2:1 MUXes
3 7 :
4 Addrt
S——1Pu}
g ———i
7 ——
a ——
0
i , ——
bits. Botar?r%rue;: s L Pipeline |

Figure 3.8. Microcode ROM Arrangement

Condition Multiplezer: The condition multiplexer collects all of the flags generated through-
out the FPASP. The multiplexer is then used to select the particular flag that will be used for a
branch condition. Six bits in a "Conditional Multiplexer Select” field of the upper ROM word are
used to control the selection by the MUX. Of the 64 total selections provided by the field, there

are 48 distinct flags and the remaining 16 are the inverse of other flags.

3-16

— Control Signal
=== Micro-Address
s Address

bottom

top

MBR Rt R2 ST ACK
1 L l SMic.ro—
equencer
Data
Pads
TAG
select Flags to
Branch Logic
1
Addr | Stack
Pads Pointer
T Control signals
MAR - from Branch Logic

Figure 3.9. Stack Architecture

3-17

IV, FPASP RTL Simulator

4.1 Introduction

The design and development of the Kalman Filter microcode for the FPASP requires the
ability to test and simulate the microcode not only at the submodule level, but also at the overall
system level. The original requirements for an FPASP simulator required the simulator to be
developed using VHDL. Besides allowing a user to simulate a microcoded user algorithm, VHDL
also provides the means to validate a hardware design. After a considerable amount of work, it
was determined that the time required to simulate a fairly large microcode program would be
quite large. In fact, preliminary analysis indicated that a simulation a 64—state Kalman Filter
using a VHDL simulator would require at least 2 years of real time on a VAX 8800. Even if the
preliminary data was off by an order of magnitude, the time to simulate a large Kalman Filter
would still be unacceptable. In its current form, VHDI. does not serve as an effective platform for

the development of application software.

The need to test microcode applications developed for the FPASP required that an application
specific language be used to allow for rapid simulations. C was chosen as the language to develop
the FPASP RTL simulator because it is extremely flexible, faster than most other higher—order
languages, and easily ported to other computer systems. This chapter will document the devel-
opment of the FPASP RTL simulator to include the requirements the simulator had to meet, the
external interfaces of the simulator, a detailed functional description of the simulator, testing the
simulator, limitations of the simulator, and some notes on the use of the simulator. A complete

users manu . is provided with the simulator.

4.2 RTL Simulator Requirements

The requirements the RTL simulator had to meet were varied but quite basic. The RTL
simulator had to be able to read in directly the .irans file output of the GMAT (Generic Microcode
Assembler Tool) assembler. The GMAT assembler was developed by Robert Hauser to support the
development of FPASP microcode, and to generate the inrut file required by the XROM silicon
compiler for the layout of the fixed ROM storage (Hau87). Along with generating files compatible

as inputs to the XROM compiler, the GMAT assembler also generates a file, with a file extension of

4-1

.trans, that contains a bit string translation of the microcode. Essentially, the bit string translation
is the ASCII equivalent of the XROM/LPROM bit pattern contents. The requirement that the
RTL simulator accept this .trans file as the XROM/LPROM input source allows the microcode
designer to develop mnemonic microcode programs, assemble them with GMAT, and then execute
them with the RTL simulator. This requirement greatly enhances the development of microcode
for the FPASP by allowing the designer to work at the mnemonic level or essentially one level of

abstraction above the actual bit patterns of the microword itself.

A second requirement of the RTL simulator was the need to provide sufficient output to
aid the designer in debugging the microcode under development. Information passed to and from
the FPASP must be accomplished through the FPASP’s external memory. The information can
be anything from the data the FPASP must perform some operation on to flags indicating some
internal condition. This however quickly proved to be insufficient as a means to track the FPASP’s
internal flow of data required to trace a particularly complex program. To aid the designer, the
RTL simulator L.ad to be able to provide some insight into the internal flow of data as the simulation
progresses. One means to accomplish this, and the one which was pursued, was to provide snapshots
of the internal register states as well as the current data on the busses for each simulated clock
cycle if so desired. This option is completely user selectable, and the user can elect to record just
the bus information or a complete record of register contents and bus values. In addition to the
types of information recorded, the user can also select at which address in the microcode program
the recordings will begin. Using this approach, a designer will be able to review the progression of

a program as it was executed step by step.

A third requirement of the RTL simulator was the ability to execute microcode programs as
quickly as possible to provide timely simulation results. It is anticipated that the execution time
of microcode programs, in particular the Kalman Filter program, can be quite large requiring on
the order of a million simulation cycles for a complete simulation. To meet this requirement, the
development of the RTI, simulator had to pay close attention to the methods used to model the
individual FPASP components to ensure that the correctness of the model was not sacrificed for

speed of execution.

Finally, and just as important as modeling the internal functions, the RTL simulator had to

4-2

model the internal components of the FPASP topologically. The FPASP is a very complicated
example of VLSI architecture which is comprised of many individual components that must be
sequenced correctly according to data and control signal inputs. It is not enough to develop a
program that takes the same inputs and provides the same outputs as the FPASP, yet internally
does not map to the FPASP, and call it a simulator. The simulator developed to simulate FPASP
microcode must internally map to the individual sub—components of the FPASP. This requirement
will insure that the simulator can be easily updated to accommodate future modifications to the

FPASP architecture.

4.3 Ezternal Interfaces

The external interfaces to the FPASP RTL simulator are the disk files that must be present
in the current directory when the simulator is executed. There are three input files required by the
RTL simulator. One of these files has already been described and is the GMAT generated .trans file
that contains the initial XROM/LPROM contents. The other two input files contain the simulated

external memory contents - one for the even memory bank, and one for the odd memory bank.

The RTL simulator produces three output files at the completion of each simulation run.
The first nutput file, MEMDUMP, contains the final contents of the simulator’s external memory
banks in two columns. The first column contains the even memory bank data, and the second
column contains the odd memory bank data. A third column is also generated giving the floating
point representation of the memory data. The second output file generated by the RTL simulator,
FPASP.OUT, contains the sequenced recordings of the simulator’s internal register states and
bus values. There is one record for each simulated clock cycle and, depending on the size of the
microcode program being simulated, the file can be quite large. The third output file, FPASP.RPT,
simply contains the total number of clock cycles for the simulation, and the total number of floating
point operations performed. This information is useful for evaluating the performance of a given

microcode program.

4-3

Logical Ordering of FPASP Functions
With Respect to Simulation Time

P ' |

|

1 l |

|

| l

!]
|

o, | '
|

s I

| |

| |

® Drive Pipeline QOut ¢ Floating Point Operations ¢ C Bus Tie
* Precharge Busses * ALU/Shifter Operations *® Load Registers
¢ Drive Busses ® Function ROM Output
¢ Literal Inserter ¢ Barrel Shifter
* A,B,E Bus Ties

Figure 4.1. RTL Simulator Sequencing

4.4 RTL Simulator Development

The development of the RTL simulator began with the identification of each internal FPASP
function based on the register level design given in Chapter 3. The operation of each function could
then be modeled with a C subroutine. The sequencing of the internal FPASP functions is based on
an externally generated clock signal. Simulating this timed sequencing of events required that each
function, whether it be loading a register or driving a bus, be logically ordered according to when
it should execute with respect to the system clock. Figure 4.1 lists the FPASP functions relative to
the clock signal and consequently identifies the order of execution of the function subroutines. For
functions that drive register contents onto a bus, or functions that load bus values into registers,
this method is straight forward. For example, Figure 4.1 clearly indentifies that the A and B busses
need to be driven by registers befo- . ALU or floating point subroutines can be called, but what'’s

not so clear is the sequencing of the bus ties.

To simulate the actions of the bus ties, it is necessary to insure that the undriven bus is being
set equal to the driven bus, and not the other way around. In the case of the pre—charged buses
which consist of the A, B, and E busses, this is accomplished by simply ANDing the upper data
path and the lower data path busses together and setting both busses equal to the result. However,

for the C bus which is not pre—charged, it is necessary to explicitly determine which bus has

being driven and setting the undriven bus equal to the driven bus. In the case where both upper
and lower C buses are driven during the same clock period, an error condition is flagged. After
determining the order of events in a given simulation cycle and resolving the bus ties, the design
and development of the RTL simulator proceeded by grouping similar functions that could occur

during the same instant of simulation time, and writing subroutines to emulate their operations.

The development of the individual subroutines that emulate the various functions of the
FPASP was based on the similarity of the functions to be simulated. For example, all FPASP
functions that placed register values on the busses during the rising edge of ®; were grouped into
one subroutine for each data path. In a similar fashion, all FPASP functions that loaded bus values
into registers with the falling edge of ¢, were placed in another subroutine. Calling the subroutines
consecutively effectively simulates the MS flip—flop operation of the registers. There are 15 basic
subroutines that are called in consecutive order to simulate the data flow through the FPASP.
Figure 4.2 gives a flow chart depicting the 15 subroutines and the order in which they are called

from the main routine.

Figure 4.2 shows that the simulation of a microcode program begins with the initialization of
the simulator. After initialization, the first subroutine called is the microsequencer, after which the
pre—charged busses are charged, and then register contents are driven onto the buses according the
bit patterns of the individual micro—fields. Once the selected registers have driven their contents
onto the busses, the A, B, and E bus tie micro—fields are tested, and the appropriate busses are tied
together if so selected. Next, the Fvaction ROM, Literal Inserter, and Barrel Shifter subroutines
are called. These subroutines may have to place data on the busses to be used by the computa-
tional subroutines that follow. The process continues by performing selected upper ALU/SHIFTER
functions followed by selected lower ALU/SHIFTER functions. Next, the appropriately selected
floating point multiplication functions are performed. Since floating point multiplication is a de-
fault micro—field setting, floating point multiplication is performed every clock cycle unless integer
multiplication is explicitly selected. Floating point addition is performed next unless floating point
subtraction is explicitly requested. Each of the subroutines that process data place their results on
the appropriate C bus, and the next two routines take the value off the C busses and load it into
the selected registers. The exceptions are the floating point processing routines which pass their

results into delay variables which effectively emulates a pipeline. This is to insure the proper two

4-5

Intitialization

v

Precharge Busses

v
Drive Upper Busses
v

Drive Lower Busses

v
A B E Bus Ties
v

Function ROM

v

Barrel Shifter
v
Upper ALU
v
Lower ALU
v
FP Multiply
v
FP Add/Subtract
v
C Bus Tie
v
Drive Upper Regs

v

Drive Lower Regs

Microsequencer ([ff———

Figure 4.2. RTL Simulator Flow Chart

clock cycle delay required for floating point operations.

4.5 RTL Simulator Functional Description

The preceding section described the development process for the FPASP RTL simulator and
briefly described the subroutines that were developed to emulate the various FPASP operations.
This section will discuss in depth each of these routines to illustrate that the routines do in fact

emulate the portions of the FPASP they were designed to.

4.5.1 Initialization The initialization routine reads in the microcode program from the
.trans file into an array that serves as the FPASP XROM/LPROM. Currently, there is no dis-
tinction between the XROM and LPROM and all microwords are stored contiguously. The ini-
tialization routine also reads in the memory contents from the two external files, HI.MEM and
LO_MEM, and places the data in two arrays that serve as the even memory bank and the odd

memory bank.

4.5.2 Microsequencer: The microsequencer subroutine was designed to emulate the opera-
tion of the FPASP microsequencer to include the functions of the pipeline register, control address
register (CAR), microaddress stack, and the XROM/LPROM. In addition to these functions, the
microsequencer subroutine also provides the capabilities to multiplex all the various flags gener-
ated throughout the FPASP that control conditional branches, calls, and returns from within a

microcode program.

Initialization of the simulator insures that the CAR is preset to zero to point to the first
word of the micro ROM. The sequencing of events within the microsequencer subroutine begins
with copying the first 64 bits of the pipeline register variable and placing those bits into the upper
ROM word, and copying the last 64 bits from the pipeline register variable into the lower ROM
word. The pipeline register variable is then updated with the next micro word from the micro
ROM as indexed by the CAR. The Branch Control micro—field bits from the upper ROM word
and are evaluated to see if a branch, call, return, or map was requested. If no branch is requested
in the Branch Control micro—field, the CAR is simply incremented. If a branch is requested, the

subroutine converts the Conditional Multiplexer Select micro—field bits from the upper ROM word

into an integer, and indexes into a boolean flag array to test the requested flag. If the flag is found
true, the Next Address/Literal Field micro—field from the lower ROM word is converted to an
integer. The CAR is then updated with the new address and the subroutine exited. If the flag is

false. the CAR is incremented and the routine exited.

If a cali 10 a nucrocode suvioutine is requested, the flag pouiiiel o vy the Condivonal Mul-
tiplexer Select micro—field is tested and if true, the current address in the CAR is incremented,
pushed onto the micro stack, and the stack pointer incremented. The address in the Next Ad-
dress/Literal Field micro—field is fetched, converted to an integer, and placed in the CAR. Here

again, if the flag tested was false, the CAR is incremented and the routine exited.

In a similar fashion, if a return from subroutine was requested, the appropriate flag is tested
and if found to be true, the stack pointer is decremented and the return address is popped from the
micro stack and assigned to the CAR. Otherwise the CAR is incremented and the routine exited.
Currently, the unconditional MAP Branch Control is not implemented. The MAP Branch Control
functions to support assembly language routines written for the FPASP which at this time are not

clearly defined.

4.5.3 Bus Precharging: Prior to driving any data from the registers onto the A, B, or
E busses in both data paths, the busses must be precharged. The precharging of the busses is

performed in the top level routine and consists of writing 1’s into every bit of the busses.

4.5.4 Drive Upper Busses: The subroutine Drive_Upper_Busses functionally groups all FPASP
operations that drive register contents onto the A, B, or E busses. This was necessary to prevent
the proliferation of many small routines that needed to occur at essentially the same time in the sim-
ulation cycle. This subroutine first examines the Upper A Bus Select micro—field of the upper ROM
word and selects the appropriate register from the general purpose registers, the incrementable reg-
isters, the memory pointer registers, or the upper MBR. The upper A bus, which is precharged, is
AND’d with the contents of the selected register. Similarly, the Upper B Bus Select micro—field of
the upper ROM word is scanned and contents of a selected register, or the upper data path outputs
of the floating point multiplier aud floating point adder/subtractor, is AND’d with the precharged
upper B bus.

4-8

The functions of the literal inserter are aiso emulated in this subroutine. There are 15
functions the literal inserter can perform based on the bit pattern of the Literal Inserter Control
micro—field of the upper ROM word. The first three functions which are specific 1c the assembly
language capabilities of the FPASP are not supported in this simulator. The other 12 however
are completely implemented. The Literal Inserter Control micro—field is scanned and if a request
to insert the bit string located in the Next Address/Literal Field micro—field of the lower RO\
word is found, the 16 bits of the Next Address/Literal Field micro—field from the lower ROM word
are AND’d onto the A busses according to the criteria defined in the FPASP Microcode Fields

Definitions in Appendix A.

This Drive_Upper_Busses subroutine also drives the upper E bus with the contents of the two
memory pointers. The Upper E Bus Select micro—field is scanned and based on the bit pattern
encountered, either the contents of the APTR or the BPTR are placed onto the upper E bus. This
micro—field also controls disconnecting the upper memory address and controls allowing them to
float to high Z. This function is related to the assembly language capabilities of the FPASP and is

not implemented in this simulator.

The upper MAR is directly connected to the upper Address bus of the FPASP and this
subroutine ensures the upper Address bus is driven with the current contents of the upper MAR.

During each simulated clock cycle, the contents of the upper MAR are driven onto the upper

Address bus.

The final function the subroutine drives of the upper D bus. Data can be driven onto the
upper D bus from either the upper MBR or from the Upper Memory Bank. The subroutine checks
the Upper Memory Chip Select Bar micro—field and if the bit is ’0’ indicating the chip is active,
the routine procedes to check the Upper Memory Write Enable Bar micro—field and the Upper
Memory Chip Output Enable Bar micro—field. If the Upper Memory Write Enable Bar micro—field
is '0°, and the Upper Memory Chip Output Enable Bar micro—field is ’1’, the external memory
chips are not enabled for a read operation and the contents of the upper MBR are driven onto the
upper D bus. If the Upper Memory Write Enable Bar micro—field is ’1’, and the Upper Memory
Chip Enable Bar micro—field is ’0’, the external memory chips are enabled for a read operation

and the upper D bus is driven from the Upper Memory Bank.

4-9

4.5.5 Drive Lower Busses: The next subroutine called is the Drive_Lower_Busses routine is
a mirror image of the Drive_Upper_Busses subroutine with the following exception. The function
of the literal inserter is not present in this routine. The literal inserter does have the capability
to insert literal fields from the microcode directly onto both A busses. Rather than break the
operation of the literal inserter into two separate routines. one driving the upper A bus and the
oTher Uriving tie lower A bus, iL Was LIOTe elliticw: W leave i toutline intact and place it in the

Drive_Upper_Busses routine.

4.5.6 Barrel Shifter: This subroutine emulates the function of the Barrel Shifter. The Barrel
Shifter Set—up micro—field is sliced from the _ower ROM word, as is the Barrel Shifter Control
micro—field, and both are converted to integers. If the Barrel Shifter Set—up micro—field is zero
and the Barrel Shifter Control micro—field is not zero, the data on the lower A bhus is circularly
shift left the appropriate number of times. The result is placed on the lower C bus. In a similar
fashion. the rest of the Barrel shifter Set—up micro—field is decoded, and the appropriate shifts
made. In those cases where the MSB ! .iie Darrel Shifter Set—up micro—field is ‘1°, the Barrel
Register is loaded with the five LSBs from the lower C bus before the routine terminates. The

value loaded into the Barrel Register will be available in the next simulation cycle.

4.5.7 Function ROM: This subroutine emulates the operation of the Function ROM. The
Function ROM Select micro—field is sliced from the upper ROM word and converted to an integer.
If the result is not zero, it is used as an index to select one of the Function ROM pages. The
Function Rom itself is maintained as a two dimensional array of string constants that contain the
seed values for various recursive routines. After selecting the proper page based on the integer
value of the bit string of the Function ROM Select micro-field, bits 52 downto 47 are masked from
the upper B bus and shifted right 16 times. These bits represent the LSB of the exponent and the
4 MSBs of the mantissa of the most significant 32 bits of a floating point number. The resultant
bit string is converted to an integer and used to select the appropriate seed from the selected ROM

page and is driven onto the upper C bus.

4.5.8 A, B, and E Bus Ties: At this phase of the simulation cycle, a'* of the busses, both

lower and upper, that are going to be driven have been updated with new values. This routine

examines the A Bus Tie micro—field and the B Bus Tie micro—field of the lower ROM word and
the E Bus Tie micro—field of the upper ROM word. As noted earlier, the A busses, B busses,
and the E busses are precharged busses. This routine examines the A Bus Tie, B Bus Tie, and E
Bus Tie micro—fields, and if any of the bits are a '1°, the appropriate upper and lower busscs are

AND’d together and the resultant value reassigned to both the busses.

{.5.9 Upper ALU/SHIFTER Functions: This routine combines the functions of the upper
ALU and the upper Linear Shifter. At this phase of the simulation cycle, both the upper A bus
and the upper B bus are driven with integer values current, and the data can now be processed.
The routine emulates all the functions of the ALU collecting the results in an intermediate shifter
bus. The routine then takes the results passed from the ALU on the shifter bus and emulates all
the functions of the Linear Shifter. The results of the Linear Shifter are passed out on the upper C
bus. During the simulations of the ALU and the Linear Shifter, any flags that change as a result

of the selected functions are set accordingly.

The routine begins by examining the Upper ALU Select micro—-field of iiie upper ROM woid.
The bus width of all the busses, except for the upper and lower address busses, are 32 bits which
matches the number of bits in th~ long integer type in the C programming language. This routine
treats the A and B bus inputs as two long integers and performs the logical and arithmetic functions
using the C’s internal integer routines. This method posed the problem of setting the lags correct!y
as the C programming language does not provide access to its internal flags. The sub..utine works
around this by performing a few bit manipulations on the input values, and by testing the output
value. To test for a zero condition, the o:‘tput value is simply tested for zero. Testing the MSB
of the output value determines if the value is negative. To test for a carry condition, the most
significant 31 bits of both input values are masked off. The modified input values are then added
and the sum shifted right once leaving only the carry out of the LSB position. The original input
values are then shifted right once and added. The carry out of the LSB position is then added
into the sum and the MSB position of the final sum tested for a carry out condition. To test for
an overflow condition, the MSB of the original input values is masked off, and the modified values
added. The MSB of the sum is compared against the previously determined carry out to determine

is an overflow has occured.

The output of the ALU is placed on an intermediate shifter variable which acts as the input
bus to the Linear Shifter. The routine then examines the Upper Shift Control micro—field to
determine which shift operation. if any, is to be performed. Here again the input on the shifter bus
is treated as a long integer and C’s internal logic routines are used to perform the various shifts.
Before a shift is performed, the MSB or the LSB of the input is tested, depending on the direction

of the shift, to determine if the upper Shift Out flag should be set.

4.5.10 Lower ALU/SHIFTER Functions: This routine combines the functions of the lower
ALU and the lower Linear Shifter. The functional description for the routine is identical to that

given for the upper ALU and Linear Shifter and therefore will not be reneated.

4.5.11 Floating Point Multiplier: This routine emulates the functions of the floating point
multiplier by combining the halved floating point numbers on the A and B busses, performing
double precision multiplication, splitting the product in half before placing it on the C busses,
and setting the appropriate flags. The routine combines and splits the floating point numbers by
making use of the C union structure. The union structure allows difterent data types to occupy
the same physical memory space. In this routine, a union structure is defined to hold a double
precision floating point variable as well as an array of two long integers. Since a double precision
floating point variable occupies eight bytes and two long integers also occupy eight bytes, the two
completely overlap one another. Addressing the union as a floating point variable allows floating
point operations to be periormed, yet addressing the elements of the double integer array allows
integer operations to be performed on each element. To combine the two halves of a floating point
number from the A busses merely requires assigning the contents of one bus to an element of
the donble integer array, and the contents of other bus to the other element of the array. In a
similar fashion, the data on the two B busses can be combined within a similar union structure.
Double precision floating point multiplication can then be performed by multiplying the two union
floating point variables together and placing the product in yet a third union’s floating point
variable. The resultant union’s integer array can then be indexed into to retrieve the upper and
lower halves of the floating point product from the two integer array elements which can then be
placed on the C busses. Although this method provides a very fast an efficient means to emulate

the FPASP floating point hardware, it does provide difficulty in determining which flags need to

4-12

be set. To determine if the result was a zero only requires checking the result placed on both the
C busses to see if they are both zero. To determine if the Not—A—Number flag should be raised
required checking the resultant exponent for all ones. To determine if the underflow, overfiow, and
denormalized flags should be raised would require extensive bit manipulations of both the multiplier
and the multiplicand. This along with the default floating point multiplication that occurs every
simulation cvcle would significantly increase the simulation times. Therefore, these flags are nct

supported at this time in the RTL simulator.

The results of the floating point multiplication routine are pipelined to provide a simulated
two cvcle delay. Although pipelining the results is sufficient to provide the required delay. it is
possible to input new data into the emulated fioating point multiplier every clock cycle and receive

correct results with a two cycle latency.

The second function this routine emulates from the floating point hardware is integer mul-
tiplication. As explained earlier, the contents of the A and B busses are placed in double integer
arrays in union structures. This allows for direct integer multiplication between the elements of the
two arrays which is the method chosen to emulate the FPASP integer multiplication. Although it
is an easy matter to determine if an overflow occurred during the integer multiplication, it would
be very difficnlt to determine how much of an overflow vccurred. For this reason, integer multipli-
cation where the product exceeds 32 bits is not supported by this emulation method although the
overflow flag is set to indicate the result is erroneous. As with the floating point multiplier, the
results are pipelined to provide a two clock cycle latency and care should be taken in the developing

of microcode programs to insure the multiplier is not being loaded in a pipeline fashion.

4.5.12 Floating Point Addition/Subtraction: Emulation of the floating point adder/subtractor
uses the same union structure approach as described for the floating point multiplication emula-
tion. Complete double precision floating pcint addition and subtraction is supported, but as with
floating point multiplication, several of the flags are not supported. The Adder Overflow flag and
the Adder Difference flag are not supported because of the number of bit manipulations that would
have to be performed in a default function that is performed every simulation cycle. This however
should not be detrimental to the successful development of microcode programs. The results of the

floating point adder/subtractor are pipelined to simulate the two cycle latency of the hardware.

4-13

4.5.13 C Bus Tie: At this phase of the simulation cycle, the subroutines that emulate the
processing functions of the FPASP are complete with their corresponding results placed on the
appropriate C bus. As discussed earlier. the C bus is not a precharged bus and consequently the
upper and lower C busses can not be ANDed together should the C Bus Tie micro—field request it.
The reason for this is that old data doesn’t dissipate from the busses as it would if the busses were
precharged and ANDing the busses together would produce erroneous results. The RTL simulator
solved this problem by providing two global flags, vne for each C bus, that are set by the individual
processing routines whenever they drive results out onto the bus. Initially, at the beginning of each
simulation cycle, these flags are reset to false. After the processing routines have completed, the C
Bus Select micro—field is scanned and if the bit is found set to "1, this routine checks the bus flags
to determine which C bus was driven. The C bus that wasn’t driven during the current simulation
cycle is set to equal the driven bus, or if both busses were driven, the contents of both busses are

ANDed together and both busses are set equal to the result.

4.5.14 Drive Upper Registers: During the final phase of the simulation cycle, the processed
results which were driven onto the C busses are latched (or assigned) into registers indicated by the
various micro—fields of both ROM words. Additionally, the incrementable registers, which include

the incrementable registers, memory pointers, and the MARs, are updated at this time.

The subroutine starts by converting the Upper C Bus Select micro—field from the upper
ROM word bit string into an integer. If the integer is in the range from 1 to 25, the corresponding
general purpose register is loaded with the contents of the upper C bus. If the integer is greater than
25, the appropriate incrementable register, memory pointer register, or the MBR 1s loaded with
the contents of the upper C bus. Next the Upper Memory Address Register Control micro—field
is scanned and the MAR is updated with the contents of the upper C bus, upper E bus, or the
register is incremented according to the micro—field bit pattern. The Upper Memory Buffer Register
Control micro—field is scanned next and either the general purpose register 1, or the general purpose
register 2, or the MBR is loaded with the contents of the upper D bus. The subroutine next scans
the Upper Incrementable Registers Control micro—field and the selected incrementable register is
incremented. This is followed by a scan of the A, B Pointer Controls micro—field. In this portion of

the subroutine, the memory pointer increment registers are loaded from the C bus, or the memory

pointer registers are incremented with the value of their increment register, or a combination of the
two is performed. Finally, if a write to external memory is requested acccrding to the bit settings
of the Upper Memory Chip Select Bar, Upper Memory Write Enable Bar, and Uipper Memory
Chip Output Enable Bar micro-fields, the contents on the upper D bus are written to the exiernal

memory location pointed to by the upper address bus.

{.5.15 Drive Lower Regisiers: The subroutine performs the identical functions as its coun-
terpart described above. The exception is that all the functions are performed on the lower data

path registers and the lower external memory bank.

4.6 RTL Simulator Testing

The RTL simulator test plan required that several small microcode programs be developed
to exercise the various data processing capabilities of the simulator. At the end of each test
simulation, the results which were recorded in the simulation snapshot file, were compared against
hand generated anticipated resnlts and the iterative process of testing and debugging continued

until the two results matched.

A microcode test program was written to test the transfer of data between general purpose
registers. This program effectively tested driving data out from a register onto the A bus, passing
tne data through the ALUs and the Linear Shifters to the C bus, and back into a selected register.
Next a microcode test program was developed to test the functions of the ALUs. This program
drove the data out from two registers onto the A and 3 busses and into the ALUs. The 15 functions
of the ALUs wer2 exercised one at a time and the results placed into separate registers where they
could be compared to the anticipated results. Similarly, a microcode test program was developed to
test the 15 functions of the Linear Shifters and the results were also compared against anticipated
results. After testing the ALUs and the Linear Shifters, microcode programs were written to test
the functionality of the floating point multiplier and the floating point adder/subtractor. Next,
programs were written to test the literal inserter, bus tie functions, and external memory. Once
testing of the individual subcomponents was completed satisfactorily, more elaborate microcode

programs were used that would integrate all the functions of the simulator.

Capt John Comtois, as part of his thesis, developed microcode routines for matrix multiplica-

4-15

tion and for Newton Raphson Inversion. These routines were assembled using GMAT and simulated
with the FPASP RTL simulator as the final phase of the test plan. Both the matrix multiplication
routine and the Newton Raphson routine have many conditional branches and subroutine calls
which theoroughly tested the microsequencer emulator. The matrix multiplication routine performs
a number of floating point multiplications and additions based on the dimensions of the two ma-
trices being multiplied. Additionally, the matrix multiplication routine exercises the incrementable
registers and memory pointer registers along with numerous reads and writes to external memory.
The Newton Raphson Inversion routine exercises the Function ROM, the floating point emulators,
certain functions of the ALUs, the literal inserter, and relies on the ANDing function of the busses
where more than one register drives the bus at one tiine. Testing the simulator using these routines
required several iterations to correct the simulator and the routines themselves. After the simula-
tor was capable cf executing the microcode routines successfully using a variety of initial variables,
the FPASP RTL simulator was ready to aid in the development of the Kalman Filter microcode

program.

4.7 FPASP RTL simulator Limitations

A considerable amount of effort was expended to make the FPASP RTL simulator emulate
as many of the functions of the FPASP as possible. As previously mentioned, the ontputs of
the floating point emulators are pipelined to emulate a two cycle latency. This however does not
correctly einulate the actual FPASP floating point hardware. The two cycle latency of the FPASP
floating point hardware is a result of signal propagation delays and not because of any pipelining
techniques. Results read before two clock cycles will be completely erroneous and may not even
be floating point numbers. The methods used to emulate the floating point hardware in the RTL
simulator provide ne easy methods of determining the conditions of all the flags. Consequently, the
multipiier overflow, underflow, and denormalized flags are not supported, and the adder overflow
and difference flags are not supported. This may be changed at a later date. However, the current
capabilities of Lhe simulator are more than adequate to support the development of the Kalman

Filter microcode prcgram.

4-16

4.8 Using the FPASP RTL simulator

Complete instructions for using the FPASP RTL simulator to run FPASP microcode programs
are given in the simulator’s users manual. However, it appears appropriate to say a few words on

using the simulator at this time.

Three files must be prepared before the RTL simulator can be used. One of the files contains
the ASCII bit string XROM/LPROM contents, and was generated using GMAT to assemble the
mnemonic microcode program. This file will have a .trans file extension on UNIX machines and a
.trn file extension on IBM PC machines. The next two files are named HI_LMEM and LO_MEM and
contain the external memory contents that will be read into the emulated upper external memory
bank and the lower external memory bank respectively. All floating point numbers have been split
in half, and the most significant half is in the HI.MEM file and the least significant half is in the
LOMEM file. The user will have to provide a program that will perform this operation on the
data to be used by the simulator. Once these files are generated and located in the same directory
with the FPASP RTL simulator, the user has two optional means to invoke the simulator. At the
system prompt, the ser can enter FPASP followed by the simulator options and press enter as

shown below.

% FPASP filename.trans y/n XXX y/n

filename.trans microcode program

y/n generate FPASP state file
XXX line number to start recording
y/n abbreviated state file

This option allows the user to invoke the simulator specifying all the options from the com-
mand line. This is particularly useful by allowing the simulator to run in the back ground on UNIX
sased computers. With the second option, the user enters FPASP at the system prompt, and is

queried with a series of prompts asking for the same information described above.

When the simulation is complete, the simulator generates three files. The first file, named
FPASP.OUT, contains the FPASP state information collected during each simulation cycle begin-

ning at the specified line number of the microcode program. The second file, named MEMDUMP,

4-17

contains the contents of both the upper and lower external memory banks in two columns with
each column entry numbered indicating the memory index. A third column gives the floating point
representation of the data contained in the two memory columns. The third output file contains
performance information indic-ting the total number of clock cycles required for the program, and

the total number of floating point operations performed.

4-18

V. VHDL Simulator

5.1 Introduction

The previous chapter gave a detailed account of the development of the FPASP logic simulator
using the C programming language. The logic simulator emulates the functional elements of the
FPASP using subroutines and procedure calls sequenced in the correct order. The usefulness of
this tvpe of simulator is limited to emulating the functional concepts of a digital system, and
is not capable of testing and validating the VLSI design itself. VHDL, on the other hand, is a
formal notation intended to express the functional and logical organization of a digital system. The
function of a system is specified as a transform mapping of inputs to outputs where time is explicitly
referenced in the transform, and the organization of a system is expressed in terms of interconnected
components (Int85). In this manner, VHDL provides the necessary tools to completely describe a
digital system in a model that is executable, and is therefore capable of aiding in the testing and
validation of a VLSI design. The concept of VHDL departs so radically from the more traditional
higher order languages that it would benefit to provide a brief description of VHDL.

5.2 What is VHDL

VHDL has been compared to ADA and in fact has many of the same goals as the ADA
language. VHDL provides a wide range of abstraction levels from the architecture level down to
the gate level (Coe89). More impoitantly, VHDL supports the easy mixing of these widely varying
levels of abstraction during simulation making it possible to adopt a true top-down design style.

In addition, the VHDL language has exceptional facilities for modeling hardware timing.

In VHDL, signals are objects that may be changed and have a time dimension (Arm89).
Associated with every signal assignment statement is a signal driver which has a value component
and a time component. For a given transaction, the value component represents a value that the
signal will assume at some point in time, and the time component specifies which point in time.
If the name of a user-defined resolution function appears in the declaration of a signal, or in the
declaration of the subtype used to declare the signal, the signal is a resolved signal (Fle88). If
a signal is to have more than one driver, the signal must be a resolved signal. The user-defined

resolution function is evaluated when one or more of the drivers of the signal receives a new value.

5-1

The resultant value assigned to the signal is the value computed by the resolution function based on
the inputs of all the drivers. If it is desired that the values of one or more drivers not be considered
by the resolution function in computing a new signal value, those drivers must be turned off. Only

the drivers of guarded signals can be turned off.

If a signal is of the kind register or bus then the signal is a guarded signal. A guarded signal
is assigned values under the control of Boolean-valued guard expressions. When a guard becomes
False, the drivers of the corresponding guarded signals are assigned a null transaction to cause

those drivers to turn off.

VHDL supports three distinct styles for the description of hardware architectures. The first of
these is the structural description, in which the architecture is expressed as a hierarchical arrange-
ment of interconnected components. The second is data-flow description, in which the architecture
is broken down into a set of concurrent register assignments, each of which may be under the con-
trol of gating signals. The last is behavioral description, in which the transform mapping of inputs
to outputs is described in sequential statements that look like any modern, high level computer

programming language (Int85). All three styles may be intermixed in a single architecture.

The design entity is the primary hardware abstraction in VHDL. It represents a portion of a
hardware design - cell, chip, board, or subsystem - that has well defined inputs and outputs, and
performs a well defined function. Each design entity is described in two parts: the definition of the
interface between the entity and the outside world, called the entity declaration; and a design for

the input/output transformation, called the architecture body.

VHDL provides two modeling elements - the block and the process. A block statement defines
an internal block representing a portion of a design, and blocks may be hierarchically nested to
support design decomposition. Each block has a declarative section, an executable section, and may
have a guard condition. When the guard condition is TRUE, concurrent statements which have
been identified as guarded are enabled within the executable section. All statements within the
executable section of a block are concurrent statements. A process statement defines an independent
sequential process representing the behavior of some portion of the design. Each process has a
declarative section followed by an executable section and may include a sensitivity list of signals

that the process is sensitive to. If a transaction occurs in any of the signals present in the sensitivity

5-2

list of a process, the process becomes active, and the statements in the executable section are
executed in a sequential fashion. A process statement executes only once during a simulation cycle.

VHDL allows blocks and processes to be intermixed within the architecture body of a design entity.

VHDL components are buiit up of one or more design entities, where block statements and
process statements are used within the architecture bodies of the entities to model the structure
and behavior of the components. The individual components that comprise the functional sub-
units of a digital design are instantiated in a top-level design unit to form the completed model
of the digital system. This completed model can then be executed simulating the functions and

operations of the digital system modeled.

5.2 VHDL Simulator Requirements

Like the logic simulator in the preceding chapter, the VHDL simulator must be able to
emulate the functions of the FPASP. However, the means of emulation are significantly different.
The logic simulator was designed to allow for quick and efficient simulation of microcode programs.
To do so the logic simulater was developed using the C programming language to emulate the logic
functions of the FPASP. This method, while it does provide for a very fast simulator, prevented
complete implementation of all the floating point hardware flags, and is of little use in validating
the hardware design of the FPASP. The VHDL simulator, while not providing ihe means to quickly
simulate microcode programs, must be able to emulate the functioning hardware of the FPASP as

a means to aid in the validation of the FPASP design.

The previous section indicated that VHDL provides for a broad range of abstraction levels
that can be used to model a digital system. The use of any particular level is dependent on the
maturity of the digital design that is to be modeled. As stated in Chapter 2, the final design of the
FPASP is proceding in a concurrent thesis based on the finalized register level description of the
FPASP given in Chapter 3. This necessarily implies that design at the gate and circuit levels are still
dynamic and sub ject to change as the finalized design nears completion. Therefore, the development
of a VHDL hardware model of the FPASP will be done at the register level, and modeling of
the individual sub-component behaviors will be done using procedure and function subroutines

(Bor88). Using the register level of abstraction will require that the FPASP be decomposed into its

5-3

basic sub-components at the register level, and a design entity deveioped for each subcomponent.
This relegates the additional requirement that the behavioral architecture of each design entity be
replaceable by a structural architecture at a later date when the design of the sub-component is

finalized.

The VHDL simulator must be flexible. The flexibility of the VHDL simulator, like that of the
logic simulator, is dependent on the ability to use a variety of microcode routines. This flexibility
will require that the VHDL simulator is capable of reading in the contents of the GMAT generated
.trans file into the XROM/LPROM. This requirement not only allows for any number of microcode
routines to be executed using the simulator, but also for microcode development to be carried out
at the mnemonic level. This requirement will directly aid the validation process of the hardware by
allowing specific microcode routines to be executed which will only exercise the FPASP components

under examination.

L2 VHDL support environment provides a Report Generator that is used after a simulation
to generate a report which gives the values that were assigned to signals during the simulation run
(Fie88). For simulotions of small systems with none or very small bus widths, this tcol is quite
adequate. However, for models of large systems, the data presentation quickly becomes cumbersome
and confusing indicating the requirement for an alternative approach for representing the data of
the simulation run. In a fashion similar to that used by the logic simulator, the VHDL simulator
must provide the means to record the internal register contents as well as the current data on the
busses during each simulated clock cycle. Also the VHDL simulator must be able to write the
contents of the simulated external memory banks out to external disk files for examination after

the simulation run.

5.4 VHDL Simulator Development

The development of the VHDL simulator began with the identification of the individual
FPASP components that needed to be modeled as design entities. Figure 5.1 depicts the finalized
FPASP floorplan as it was presented in Capt John Comtois thesis. Each rectangular region rep-
resents one sub-component or macro-cell of the FPASP architecture and, taken together, provides

the overall topology for the VHDL system model.

5.4

Upper Data Path

Data Pads Address Pads
~ == A NS N
Floating ;g! -
Point - R Address
= - Pads
Data 4
Pads
Control
f
Data «
Pad
acs Address
Pads
Lk _ i
Data Pads Address Pads

Lower Data Path

Figure 5.1. Final FPASP Floorplan

5-5

Decomposing the floorplan into its individuai components provided th. impetus for the design
of the VHDL simula*or, however, some of the individual components depicted in Figure 5.1 were
combined with other components into single design entities. In particular, the MBRs, general pur-
pose registers, memory address pointers, memory address registers, and the incrementable registers
were combined, and the entire control section consisting of the CAR, MUX, Cond MUX, Stack,
Branch Logic, and XROM/LPROM were combined. The registers were combined because from
the register level, these registers are identical with the exception that scme are incrementable. Tie
combination of the control section was done because of the inter-dependence of each component.
Aside from these two cases, the floating point adder, floating point multiplier, function ROM, up-
per and lower ALU/Linear Shifters, Barrel Shifter, and the Literal Inserter were identified to be

modeled with design entities.

After the identification of the individual design entity requirements, the port mapping of each
entity declaration was determined. Within each entity declaration, signals that import or export
data to the entity architecture are identified in a port list. The level of the signals identified in
the port list is tied directly to the level of abstraction used in the development the design entities.
As previously noted, the FPASP VHDL simulator is designed at the register level of abstraction,
therefore, signals in the port list are neressarily at that level also. [or example, data input to
a component comes from the C bus and data is outputed onto the A bus. The control for the
component is derived by decoding its individual micro control field, and its operation is timed by
the external clock. The signals that would be identified in the port list of the entity declaration for
this component would be the A bus, the C bus, the micro control field slice of the ROM control
word or the ROM control word itself, and the two phase external clock. Based on this example,
and the fact that correct operation of the MS flip-flop requires a two phase clock input, the port list

for each design entity was derived from the FPASP register level description shown in Figure 3.1.

The intra-module and inter-module timing requirements of the VHDL simulator were con-
sidered next. For the logic simulator, it sufficed to merely identify which FPASP functions had to
occur before others, and which functions could occur at essentially the same time. The subroutines
emulating these functions could then be called in a correct seque~ce from a top level routine. For
the VHDL simulator, this approach would be totally inadequate for a register level system model.

The sequencing of internal FPASP events are triggered by the rising and falling edges of a two

5-6

phase external clock. Modeling this activity with VHDL is a straight forward matter. The two
phase clock signals are mapped into the ports of each of the component design entities. These
signals are now visible to the block statements and process statements that make up the architec-
ture of the entity. Each block statement has an associated guard coudition, and when the guard
condition becomes "TRUE”, the concurrent statements in the block are executed. Each process
statement has an associated sensitivity list. The sequential statements in a process are invoked
when a change occurs in one of the signals listed in the sensitivity list. To support invoking a block
or process statement at the correct instant in simulated time, VHDL supports a rich repertoire
of signal attributes. Invoking a block statement on the falling edge of a signal, the block’s guard

b

condition would include the boolean expression - (signal = "0’ and not signal’Stable). The con-
current statements within the block would be executed with the falling edge of signal. The block
would then be disabled until the next falling edge of signal. Invoking a process statement with the
falling edge of a signal is slightly different. The signal can not be listed in the sensitivity list of
the process because that would make the process sensitive to any change occurring in the signal.
The alternate method of using the wait unti' ... statement causes the execution of the process
to cease until the conditions it is waiting on are met. Placing the statement, wait until signal
= 0’ and nat <ignal’Stable will cause the process to wait until the falling edge of signal before
execution of the remaining statements resumes. Using these contructs, the execution of the design

entities developed for the FPASP components can be timed in accordance to the rising and falling

edges of the external clock.

The development of the FPASP VHDL simulator consisted of decomposing the FPASP archi-
tecture into its components (or macro- cells) at the register level. Each component was modeled in
a design entity. The development of each design entity required determining the input and output
signals to be identified in the entity declaration port list that were commensurate with a register
level description. Finally, the intra-module and inter-module timing requirements were developed
based on an external clock. The next section will detail the development of the individual entity ar-
chitectures which model the behavior of the FPASP components. Included will be port list for each
entity, the timing requirements the entity had to meet, and a description of how the component’s

behavior was modeled.

5.5 VHDL Simulator Functional Description

This section will describe in detail the individual design entities developed for the VHDL
simulator. Design entities were developed for the VHDL simulator that modeled: the combination
of the general purpose registers, MBRs, MARs, memory address pointers and their increment
registers, and the incrementable registers; the FPASP control section consisting of the CAR, MUX,
condition MUX, stack, branch logic, and XROM/LPROM; the ALU/Linear Shifter combination;
the literal inserter; the bus ties; the function ROM; the barrel shifter; the floating point adder;
and the floating point multiplier. In addition to these design entities, two other design entities
are needed for the VHDL simulator. A design entity was needed to model the external memory
that the FPASP must interface to, and a top-level design entity was needed to tie all the other
design entities together. Before beginning with the detailed descriptions of the design entities, an

important aspect of how VHDL handles signals needs to be clarified.

The VHDL simulator has the outputs of many registers tied to the same busses. The busses
are represented as signals, and each register tied to the bus has a signal driver associated with it.
The FPASP is designed so that more than one register can drive a bus at one time. The resultant
value on the bus is the value obtained by ANDing the contents of the registers driving the bus.
This therefore implies that the busses need to be resolved signals, and the resolution function needs
to AND the values of the drivers of those registers selected to drive the busses. Those regisiers
not selected to drive the busses need to have their drivers turned off implying the busses need to
be guarded signals, and signal assignments to the busses need to be guarded assignments. It is
clear that if the signal assignments to the busses are not guarded assignments, then all the registers
connected to the bus will be contributing to the resolution function and the resultant computation
of a new bus value. The preceding rational is also valid for registers that can receive new values

from more than one bus.

As stated, the busses in the VHDL simulator are represented as signals. In the VHDL
simulator, all busses are declared of the subtype BUS_.TYPE. The subtype BUS_.TYPE is 32 bits
wide composed cf the resolved signal ALU_BUS_BIT. ALU_BUS_BIT is an enumerated type that
can assume the values of 'Z’, ’0’, '1’, or 'E’. If the value of a bus is all Zs, the bus is in a high

impedance state indicating that no signal drivers are driving the bus. The values of 0’ and 'l are

5-8

the values of interest on the bus, and the final value "E’ indicates an error condition. The error
condition is set by processing functions when an attempt is made to use the high impedance v.lue
of "Z" in a computation. The resolution function performs a wired—AND function in that the final

computed value is the result of ANDing all the signal driver values driving a signal.

It was explained earlier that block statements facilitate guard expressions. When the guard
expression is True, all guarded signal assignments within the block are activated until the guard
expression becomes False at which time the drivers associated with the guarded signal assignments
are turned off. All assignments within a block are concurrent assignments, and if a particular
behavior can be modeled with concurrent statements, this arrangement works well. If the behav-
ior can not be modeled with concurrent statements, there are two alternatives. A function or a
procedure which uses sequential statements can be developed, and a concurrent function or proce-
dure call can be made from within a guarded block. This alternative though requires developing
a separate package, and if the system being modeled requires many little functions or procedures.
the readability of the program quickly becomes cumbersome. The second alternative is to use a
process statement where signal assignments are processed sequentially. However, the sensitivity
list of a process statement does not constitute a guard expression, and a null transaction cannot
be assigned from within a process directly. It is possible though to nest a process statement within
a guarded block statement (Arm89). The sensitivity list of the nested process statement contains
the simple name GUARD and control of the signal drivers within the process are as shown in the

following example:

A: block(guard ezpression)
begin
process(GUARD)
begin
if GUARD then
X <="1%
else
X <= null;
end if;
end process;
end block A;

In this example, block A has some Boolean-valued guard expression that when True, enables
the nested process statement. Within the process statement, the implicit signal GUARD is tested,
and if true, the signal X is assigned the value 'I'. If GUARD is not true, the signal X will receive

null disconnecting that driver from the bus resolution function defined for X.

The above method of nesting a process statement within a block statement is used extensively

throughout the FPASP VHDL simulator to control the signal drivers of registers.

5.5.1 Two Phase Clock Model: The sequencing of all internal FPASP events are controlied
by an external clock. The external clock controls when registers place their contents on the busses
and when the registers load new contents {rom the busses, when the microsequencer places a new
ROM microword in the pipeline and when the pipeline outputs its contents onto the control signal
paths, and when the processing components accept data from the busses for computations. The
FPASP uses the MS flip-flop exclusively for its registers, and this type of flip-flop requires a two
phase. non-overlapping clock for proper operaticn. The FPASP is designed to operate with a clock

frequency of 25MHz which equates to a period of 40ns.

VHDL facilitates modeling this type of a clock, and the process shown below illustrates how

the two cycle external clock for the VHDL simulator was modeled.

CLOCK: process
begin
PRECHARGE <= "1’ after 2ns,
’0’ after 10ns;

PHI1 <= "1’ after 2ns,
’0’ after 10ns;

PHI2 <= 1" after 12ns,
’0’ after 38ns;

wait for 40ns;
end process CLOCK;

The three signals, PHI1, PHI2, and PRECHARGE, are signals of type Bit. The values these

signals can assume are either '0’ or ’'1’. At the beginning of the simulation cycle, the signals

5-10

PHI1 and PRECHARGE are driven with the value "1°. After a 10ns delay, the signals PHI1 and
PRECHARGE are driven with the value '0". After another 2ns delay, the signal PHI2 is driven
with the value "1" which is held for a period of 26ns after which it is driven with the value "v’. The
process waits for the full 10ns clock period after which the process repeats. The process will repeat
continuously unti! an explicit request to terminate is received. The three clock signals are local to
the architecture containing the process CLOCK, however, these signals can be listed in the port

map of an instaatiated component makirg them visible to a component for timing control.

The process CLOCK generates the simulated clock signals mentioned above which are used

throughout the FPASP model to control the sequencing of the VHDL simulator’s design entities.

5.5.2 Upper Data Path Registers Model: Two design entities were developed to model the
FPASP registers. One design entity, ASP_.UPPER_REGS, models the registers on the upper data
path and the other, ASP_.LOWER_REGS. models the registers on the lower data path. As stated
previously, the registers modeled in each of these design entities consists of the 25 general purpose
registers, the MBR, the MAR, the memory address pointers and their increment registers. and the
incrementable registers. Both of the design cutities are identical to one another with the exception

of their port lists in the entity declarations.

The port list of ASP_UPPER_REGS identifies the upper A bus. the upper B bus, the upper
C bus. the upper D bus, the upper E bus, the upper ad-iress bus, ®, and &, from the external

clock, and the upper RCM control word as shown below:

entity AspUppcrRegs is

port (UA_BUS : out BUS_TYPE bus;
UB_BUS : out BUS.TYPE bus;
UC_BUS :in BUS_.TYPE bus;
UD_BUS : inout BUS_TYPE bus;
UE_BUS : inout BUS_TYPE bus;
UP_ADD : out BUS.TYPE bus;

PHI1 pin BIT;
PHI2 in BIT;
UCW 1 in UPPER.ROM_WORD):

end AspUpperRegs;

5-11

All of the busses are of the type BUS_TYPE which is a 32 bit wide resolved signal. The two
clock inputs, PHI1 and PHI2, are of the type BIT which can assume the values of either "0’ or "1’
The signal UCW is the upper ROM control word of type UPPER_ROM_WORD which is a BIT
vector 64 bits wide. The signals identified in the port list are the only signals through which the
entity ASP.UPPER_REGS communicates to the outside.

An Eatity Structure Diagram of the ASP_UPPER_REGS design entity is shown in Figure 5.2.
The Entity Structure Diagram syntax is given in Appendix B. The registers that drive their outputs
onto the upper A bus are the 25 general purpose registers, tie incrementable registers, the memory
address pointers, and the MBR. The Upper A Bus Select micro—field of the upper ROM cnntrol
word determines which register is driving its contents onto the upper A bus at any one *fime. A
single block statement with a nested process statement was developed to emulate this activity as

shown below.

URLEG-ABUS: block(PHI1 = ’0")
begin
process(GUARD)
begin
if GUARD then
case Upper.A_Bus_Select is
when "00001” => UA _BUS <= UREG._];
when "00010" => UA_BUS <= UREG_2;

when "11001” => UA_BUS <= UREG_25;
when 711010” => UA_BUS <= UINCI1;
when "11011” => UA_BUS <= UINCZ2;
when ”11100” => UA_BUS <= UINC3;
when "11101” => UA_BUS <= UAPT;
when "11110” => UA_BUS <= UBPT;
when "11111” => UA_BUS <= UMBR;
end case;
else
UA_BUS <= null;
end if;
end process;
end block UREG_ABUS;

The block is guarded with the single Boolean-valued expression of (PHI1 = '0’) which enables

5-12

rTY
Upger Conts —FI
Block 1 % LR1_0
m—u‘ < Block ¥ X URI_1
11 Proc H
| [Bloex ¥ >4 Ix H UR1_31
gu o &y » ar UVIN1Z
Proc tIN22Z
I UIN3Z
—" ,_ UEVN
4
Upper C Bus Sel
o
Block ¥
5 I
- GP REGS |[— REG 2 2=
et P>
» V INC =
Upper A Bus Sel t— AB PTR*
1 PTR INCo———
Block *
TR . MER &
Proc
T 1
= ~ [Block ¥
Upper B Bus Sel suardé—
AB Pointer Control Proc
].___ 2
0 2 e
Block¥ ¥
8 ardé—
Proc
X e 1
Block
ard.
lp—[y Proc
U; cr INC Reg Cor |
r |_"__» P
Block *
g &
Proc
e R 1
— -2 o Block ¥ MAR T
Upper E Bus Sei —
4 Proc
2
oy @
e >
Upper MAR Control -
Proc
Lxly, ie
A A A A A, l———— ?
2 OO U A
12CD ARCHITECTURE
W D

Figure 5.2. ASP_.UPPER.EGS Entity Structure Diagram

the block when ever PHI1 equals zero thereby allowing the nested process to decode the Upper A
Bus Select micro—field, and drive the contents of the appropriate register onto the A bus. Whenever
PHI1 equals one, the block is disabled and the value ‘null’ is driven onto the bus turning the drivers

off.

A similar block statement with a nested process statement was developed to support driving
the contents of the registers unto the B bus. The Upper B Bus Select micro—field is decoded to
determine which register is selected to drive the bus. The other exception is rather than allowing
the contents of the two memory address pointers to be driven onto the B bus, the upper outputs

of the floating point multiplier and adder are selected in their place.

A single process statement is provided that places the contents of the MAR on the Upper
Address Bus at the beginning of each simulation cycle. The process consists of a wait statement
that waits for the falling edge of PHI1. With the falling edge of PHI1, a signal assignment statement

drives the contents nf the MAR onto the address bus.

A block statement with a nested process is used to decode the Upper E Bus Select micro-field
and drive either the contents of A memory address pointer or the B memory address pointer onto
the E bus. The block statement guard expression is True when PHI1 is zero and a case statement

is used to decode the micro—field.

The orly other block statement that is enabled during the period that PHI1 equals zero is
the block that drives the contents of the MBR onto the D bus. Here too, a process statemnent is
nested inside the block statement. There is no explicit micro—field whichk controls the whether the
MBR drives it contents onto the D bus or not. Rather, this conaition is implied by the Upper
Meinory Write Enable Bar micro—field. If the condition is set for the FPASP to write to external
memory, the MBR must place its contents onto the D bus. Likewise, if the condition is set for the
FPASP to read from external memory, the value on the D bus must be loaded into the MBR. An
alternative method for decoding the single bit Upper Memory Write Enable Bar micro—field is to

test the bit in the guard expression of the block statement as shown:

DRIVE_UDBUS: block(PHI1 = '0’ and UCW(43) = ’0’)
begin
process(GUARD)

5-14

begin
if GUARD then
UD_BUS <= UMBR;
else
UDBUS <= nulil;

ena if;
end process;
end block DRIVE_UDBUS;

All block and process statements so far have functioned to drive the value contents of registers
onto the busses. The next block statement loads the values on the busses into the registers, and is

implemented in a slightly different manner.

A single block statement is used to conirol the GUARD signal of several nested process
statements that load the *alues on the busses into the registers. The guard condition for this block
is True when PHI2 equals zero and the signal is not stable indicating this is the falling edge. This

approach is justified when viewing Figure 3.2.

The first nested process statement loads the value on the C bus into a register selected by
decoding the Upper C Bus Select micro—field. Each register in the FPASP hardware simulator is
a signal of the kind register which means the signal retains its value when all of its drivers are
turned off. This is necessary in cases where it is possible to load a register in more than one way.
Registers identified as being driven by more than one source are the general purpose registers 1
and 2, the incrementable registers, and the memory address pointers. These registers have their
drivers turned off with a null transaction if they are not selected. Decoding of the Upper C Bus

Select micro—field is performed using a case statement as before.

The second nested process statement loads the value on the D bus into either general purpose
registers 1 or 2, or the MBR. The determination is made by decoding the Upper Memory Buffer
Registers Control micro—field. If the guard condition is False, the drivers to these registers are

turned off using null transactions.

The third nested process statement performs the function of incrementing the memory address
pointer registers, loading the memory address pointer increment registers, or both. The A,B Pointer
Controls micro—-field is decoded using a case statement to determine which function the process

statement needs to perform. Either the A memory address pointer increment register, B memory

5-15

address pointer increment register, or both can be loaded from the C bus. Incrementing either
the A memory address pointer or the B memory address pointer is performed by adding the value
contained in each increment register to its respective pointer register. If a function is not selected,

the drivers for each of the registers is turned off using a null transaction.

The fourth nested process statement performs the functions of incrementing the incrementable
registers. The Upper Incrementable Registers Control micro~field is decoded using a case state-
ment. The appropriate incrementable register has the value of one added to its current value if

selected, otherwise the drivers are turned off.

The fifth and last nested process statement loads the values ou the C bus or the E bus
into the MAR, or it increments the MAR by one. The Upper Memory Address Register Control
micro—field is decoded using a case statement to select the appropriate function. If no function is

selected, the drivers to the MAR are turned off.

In addition to driving register contents onto the busses and loading bus values into the
registers, this architecture must also monitor the conditions of several registe-3 so that appropriate
flags may be set. The bit settings of the four least significant bits and the four most significant
bits of general purpose register 1 must be monitored, the incrementable registers must be tested

for zero, and the value on the C bus be tested to determine whether it is odd or even.

The simple process statement shown below monitors the bit settings of general purpose reg-

ister 1.

MONITOR_UREGI1: process(UREG_1)

begin
UR1.0IN <= UREG_1(0);
UR1.1IN <= UREG.1(1);
UR1.2IN <= UREG.1(2);
UR13IN <= UREG.1(3);
UR1.28IN <= UREG.1(28);
UR1.29IN <= UREG_1(29);
UR1.30IN <= UREG.1(30);
UR1.31IN <= UREG.1(31);

end process MONITOR_UREGH,

The sensitivity list of the process contains the simple name of the register, UREG_1, which
enables the process whenever a new value is loaded. The process then slices out the appropriate
bits from the register and assigns the bit values in the input side of their respective flags. Three
similar process statements monitor the incrementable registers. The sensitivity lists of the process
statements each contain one of the names of the three incrementable registers in the upper data
path. Any change to the value contained in the incrementable registers enables its respective
monitor process which calls a function passing the value of the register in the argument. The result
of the function call is loaded into the input side of the respective flags. A final process statement
similarly monitors the value on the C bus. The sensitivity list of this process statement contains
the name of the C bus, and any chauge to its value enables the process where the least significant
bit of the bus is inverted and loaded into its flag. A block statement is provided in the architecture
which drives the values of from the input side of the flags to the output side. The guard expression
for this block statement is True when PHI2 equals zero and the signal is not stable. When the
guard expression is True, concurrent signal assignments transfer the data to the output side of the

flags making their values available for the next clock cycle.

5.5.3 Lower Data Path Registers Model: The registers of the lower data path are mirror
images of the registers on the upper data path. Consequently, the architecture developed to emulate
the behavior of these registers is identical to that given above for the upper data path with two
exceptions. The first exception is that the signals declared in the entity declaration port list are
those particular to the lower data path. The second exception is that the bit settings of lower

general purpose register one are not flagged in the lower data path.

5.5.4 Control Section Model: The components that comprise the FPASP control section are
the CAR, MUX, condition MUX, stack, branch logic, and XROM/LPROM. The FPASP control
section is called the Microsequencer. The CAR ic a 10 bit wide MS flip-flop register that holds the
addresses used to index into the XROM/LPROM microcode store. The MUX selects one of four
sources that arc used to update the address held in the CAR. Two of these sources take the next
address directly from the microcode word. One source comes from the stack when an address is
popped to return from a subroutine call. The last source is from the Mapping ROM which is not

supported in this simulator at this time. The Branch Logic and the Condition MUX work together

5-17

to test the various system flags used for conditional branches and subroutine calls. The Stack is

used to hold addresses used for returns from subroutines.

The architecture of the design entity developed to model the Microsequencer behavior is

shown in Figure 5.3. The architecture has three process statements that emulate its functions.

The first process models the functions of the CAR, the MUX, the Stack, the Branch Logic,
and the XROM/LPROM. The second process statement models the Microsequencers pipeline, and
splits the Pipeline output into the Upper and Lower ROM control words that are routed out to the

rest of the simulator. The third process statement models the Condition Mux.

The port list of the entity declaration lists both clock signals, PHI1 and PHI2, and the Upper

and Lower Rom Control words as shown bealow:

entity MICRO_SEQ is

port (PHI1 1in BIT;
PHI2 :in BIT;
UPPER_.CONTROL.-WORD : inout UPPER_.ROM_WORD;
LOWER_CONTROL_-WORD : inout LOWER_ROM_.WORD);

end MICROSEQ;

The first process statement, at the beginning of the simulation, initializes the contents of the
XROM/LPROM from the external .trans disk file and sets the contents of the CAR to zero. After
initializing the XROM/LPROM, the process waits for the rising edge of the signal PHI1. With
the rising edge of PHI1, the XROM/LPROM is indexed using the CAR and the new microcode
word is driven into the input of the Pipeline register. Next, the Branch Control micro—field of the
microcode word on the output side of the Pipeline register is examined. If a conditional branch
is requested (the default), the output of the Condition Mux process is tested, and if True, the
literal address field of the microcode word is used for the next address to be loaded into the CAR.
Otherwise, the CAR is incremented by one. If a conditional call to a subroutine is requested,
the output of the Conditional Mux process is tested, and if True, the current value in the CAR
is incremented by one and pushed onto the Stack, the Stack Pointer incremented, and the literal
address field of the microcode word is used for the next address. Otherwise, the CAR is incremented

by one. If a conditional return from a subroutine is requested, the output of the Conditional Mux

5-18

oy

Loper Rom Control Word

g—Laer ROM €22 o] Ward
S [u; -~ P]pe Line Reg OU[ir—l
Proc 1
PORT i i
Pipe Driver [~ Pipe Line Reg In]r—J

*

I]r Pointer I { XROM

LPROM
Proc
»? ;‘
L > ol CAR
il A Seq &%
STACK
]
Proc .t
S
MOVF
Iu_ﬂiﬁ___" “—_—% MUN
- o NN : : I MDEN
Q. I AZ
Cond Mux k'—% UR1_31
ARCHITECTURE

Figure 5.3. Microsequencer Entity Structure Diagram

process is again tested, and if True, the Stack Pointer is decremented and a return address is popped

from the Stack and loaded .nto the CAR.

The second process statement waits for the falling edge of the signal PHI2 at which time the

microcode word at the input of the Pipeline is assigned to the Pipeline output.

The third process statement models the Condition Mux as shown in the abbreviated example

below.

MUX_CONDITION: process(UPPER.CONTROL_WORD)
variable FLAG: ALU_BUS_BIT;

begin
case MUX SLICE is

when "000000” => FLAG := '0’;
when 7000001” => FLAG := 07
when ”000010” => FLAG := 0’;
when "000011” => FLAG := MZ.OUT;
= MOVF.OUT;

when 7000100” => FLAG :
when "011100” => FLAG := UR1.0.0UT;

when ”111110” => FLAG := UR1_.30_.OUT;
when ”111111” => FLAG := UR1.31.0UT;
end case;
MUX_FLAG <= FLAG;
end process MUX_CONDITION;

The process statement is sensitive to changes in the UPPER.CCNTROL_WORD. MUX_SLICE
is the Conditional Mux Select micro—field of the microcode word. Every simulation cycle, the out-
put of the Pipeline register is driven into the signal UPPER_CONTROL_Word which enables the
process statement. Once the process statement is enabled, the local variable FLAG is either set to
the value of an internal FPASP flag, or to a fixed value as indicated by the Conditional Mux Select
micro—field. The value assigned to the variable FLAG is then used to drive the s'gnal MUX_FLAG
which is visible to the first process statement which tests this signal for conditional branches and

subroutine calls.

5-20

5.5.5 Upper ALU/Linear Shifter Combination Model: The functions of the components,
ALU and Linear Shifter, were combined into one design entity. The ALUs perform simple arithmetic
or logic functions on each of the 32 bit integer data paths. Incorporated into each ALU cell is a
linexr shifter which can perform a left, right, or no shift on the data outputed from the ALU with
a variety of sources for the bit to be shifted in. The ALU and linear shifter produce five flags for

conditional hranching. These flags are held in MS flip-flops so they can be used until reset.

The port list of the entity declaration for the design entity modeling the upper ALU/Liner
Shifter lists the upper A bus, the upper B bus, the upper C bus, PHI1 and PHI2, and the Upper

Control Word as input and output signals as shown below.

entity UPPER_ALU is
port (UA_BUS :in BUS_TYPE bus;
UB_BUS : in BUS_TYPE bus;
UC.BUS : inout BUS.TYPE bus;
PHII :in BIT;
PHI2 :in BIT;
UCW :in UPPER_ROM_WORD);
end UPPER_ALU;

The architecture of the design entity UPPER_ALU is depicted in Figure 5.4. This architecture
contains a single block statement with a nested process statement that emulates the functions of

both the ALU and the Linear Shifter.

The guard condition of the block becomes True when PHI1 is zero and stable which enables
the nested process statement. The sensitivity list of the process statement in addition to the implicit
signal GUARD also contains the name of the upper A bus and the upper B bus. The functionality
of the ALU and the Linear Shifter are not sequenced by any clock action. Both components are
composed of combinational logic circuits that are tied to both the input busses, and any values
placed on the busses are processed even if the results are ignored. Placing the names of both the
upper input busses in the sensitivity list insures the architecture models this activity. It would
seem more appropriate to place the names of the input busses using appropriate Boolean-valued
signal attributes in the guard expression of the block thereby enabling the block when ever changes

occur on the busses. This would work except for the fact that the driver for the C bus would be

5-21

Block v
GUARD@—j
Proc *

W

Upper ALU Sel
Upper Shift Ctrl

el
Carry
_'.% Sign

rrrrt

\ﬁ Overflow
\ﬁh Zero

Shift Out

N A o e e

ARCHITECTURE

ALU Shifter
SubRoutine SubRoutines

Figure 5.4. ALU/Shifter Entity Structure Diagram

5-22

turned off before the data output could be loaded into a receiving register. Hence, the need to
ensure the block is enabled for the entire time that PHI! is zero which includes the time at which

the falling edge of PHIZ occurs.

The ALU is capable of performing 16 different functions on 32 bit integers which can be
reviewed in Appendix A. Selection of any one of the functions is done by decoding the Upper
ALU Select micro—field of the upper ROM controi word. To model the 16 functions of the ALU.
16 individual subroutines were written and placed in a separate package. The majority of the
subroutines perform simple functions like ORing or ANDing two inputs together and checking the
result for zero. The arithmetic functions operate at the bit level of the input integers and set the
appropriate Sign, Carry, Zero, and Overflow flags during or after computations. The decoding of
the Upper Alu Select micro-field is performed using a case statement. The outputs of the ALU

subroutines are placed iu a local variable that is used as the input to the Linear Shifter.

The Linear Shifter is capable of performing 15 different functions on 32 bit integers which
can also be reviewed in appendix A. Selection of one of the Linear Shifters functions is done by
decoding the Upper Shift Control micro—field in the upper Rom control word. As was done for the
ALU, the 15 functions of the Linear Shifter were modeled using subroutines which were placed in
a separate package. The decoding of the Upper Shifter Control micro-field is performed using a

case statement. The outputs of the Shifter subroutines are used to drive the C bus directly.

The use of subroutines to model the functions of both the ALU and the Linear Shifter is
consistent with developing a model of a digital system at the register level. It was brought out
earlier in this thesis that the circuit level design of the FPASP is still ongoing and therefore subject
to change. Once the circuit level designs are finalized, they can be modeled with VHDL design

entities and instantiated into the upper ALU/Linear Shifter architectvre.

An additional block statement is used in architecture of the upper ALU/Linear Shifter to
drive the values of the flags from thke input side of the flags where they were placed by the various
routines, to the output side where they can be used for conditional branching in the next clock
cyrte. The guard condition of the block enables the block with the falling edge of the clock signal

PHI2 where guarded concurrent statements assign the values to the flag outputs.

5...6 Lower ALU/Linear Shiftcr Combination Model: The ALU/Linear Shifter combina-
tion on t e lower data path is a mirror copy of the ALU/Linear Shifter combination on the upper
data path. The port list for the lower combination is identical to that of the upper comblinarion
with the exception that signals referenced are particular to the lower data path. In a similar fash-
ion. the architecture of the lower ALU/Linear Shifter architecture uses subroutines to model the

behavior of the ALU and the Linear Shifter. These subroutines are placed in a separate package.

5.5.7 Literal Inserter Model: '[he Literal Inserter takes its input from the least significant
16 bits (Literal Field) of the lower ROM word and places those bits on either the upper or lower
A bus in one of 12 different ways. The different ways that the Literal Field of the lower ROM
word can be placed on the A busses can be rev ewed in Appendix A. Decoding the Literal Inserter
Control micro—field of the upper ROM word determines which way the Literal Field is placed on

the busses.

The port list of the design entity that models the Literal Inserter id. ntifies the upper and
lower A busses, both PHI1 and PHI2 clock signals, and both the upper and lower ROM controls

words as shown below.

entity LIT_INSERT is
port (UA_BUS :inout BUS_TYPE bus;
LA_BUS :inout BUS_TYPE bus;

PHI1 1 in BIT;

PHI2 :in BIT;

UCcw :in UPPER_ROM_WORD:;
[CW . in LOWER_ROM_WORDY);

end LIT_INSERT;

The architecture modeling the hehavior of the Literal Inserter uses a process statement nested

inside a black statement as shown in Figure 5.5,

The guard condition of the block statement is True when the bit pattern of the Literal Inserter
Control micro—field is all zeros, and when PHI1 is zero and Stable. The sensitivity lict of the nested
process statement lists the implicit signal GUARD as the only signal it is sensitive to. Decoding of

the Literal Inserter Control micro—field is performed using a case statement. The actual behavior of

5-24

1]

Literaf [nsert Ceatrof

upA
o A AP
$=3 .
2
UCW Block ¥ v

LC‘V GUARDHT
*
PORT [Proc *

1y

\ Literal Inserter

Literal Field
Literal Inserter Curl

ARCHITECTURE

Figure 5.5. Literal Inserter Entity Structure Diagram

3-25

_ﬁ

the Literal Inserter is modeled using sequential assignment statements within tle process statement

as shown below.

INSERT: block({INS.CONT = "0000™) and (PHI1 = '0"))
begin
process(GUARD)
begin
variable TEMP _BUS01 : BUS_TYPE;
variable TEMP_BUS02 : BUS_.TYPE;
begin
if GUARD then
case INS_.CONTROL is
when "0100" =>
TEMP_BUS01(21 dowrto 0):= HALF_ZERO;
for I in 48 to 63 loop
if LCW(I) = 'I’ then
TEMP BUS0L(63-1):= "1
else
TEMP_BUSO1:= 07
end if;
end loop;
TEMP_BUS02:= TEMP_BUSO1 and LABUS;
LA_BUS <= TEMP_.BUS02;
when 70101” =>

end case;
else
UA_BUS <= null;
LA _BUS <= nul.
end if:
end rocess;

end block INSERT:

The width of the Literal Field is only 16 bits and can be placed in either the upper half or
the lower half of the bus. In the example above. the upper half of the variable TEMP _BUSO01 i~
zeroed, and the Literal Field of the Lower Coatrol Word is read in one bit at a time into the lower
half of the temporary variable. The temporary variable is then ANDed with whatever is on the

LA_BUS, and the results are driven back onto the bus. All the variations of inserting the Literal

Field onto the A busses are modeled in a similar fashion.

5.5.8 Bus Ties Model: The Bus Ties provide an easy method of electrically connecting
selected busses together to facilitate transferring data between the upper and lower data paths.
This means that data is free to travel in both directions across the switch. The busses that are
provided with bus ties are the upper and lower A busses, upper and lower B busses, upper and

lower C busses, and the upper and lower E busses.

The design entity developed to model the behavior of the Bus Ties has the port list shown

below.

entity BUS_TIES is

port (UA_BUS : inout BVS_TYPE bus:
LA_BUS : inout BUS_TYPE bus:
Ub_bUS : inout BUS_TYPE bus;
LB_BUS : inout BUS_TYPE bus:
UC.BUS : inout BUS.TYPE* s;
LC_BUS :inout BUS_TYDF s
UE_BUS . inout BUS_TYPL bus;
LE.BUS : inout BUS.TYPE bus;

PHI :in BIT;

PHI2 :in BIT;

UCW :in UPPER_ROM_WORD:;
LCW :in LOWER_.ROM_WORD);

end BUS_TIES;

The architecture developed for the design entity modeling the Bus Ties has four hlock state-

ments each with a nested process statement as shown in Figure 5.6.

Modeling th. switch action for the A, B, and E busses is straight forward because all of these
busses are precharged busses. The C bus is not precharged and modeling the behavior of ‘ts switch

was handled in a differeiit manner.

There are four independent micro—fields controlling the actions of the four bus ties. The
guard condition of the block statement for the A Bus Tie is True when PHI1 is zero and when
A Bus Tie micro—field bit of the lower ROM vord is set to ‘1’. The sensitivity list of the nested
process contains the name of the implicit signal GUARD and the upper and lower A busses. This
insures that any changes on either of the A busses is reflected in th~ir valnes. Inside the process

statement, the values on both the A busses are ANDed together, and the result is driven onto both

o
[3]
-1

A(ar nr ~ Yy ur ‘r - qr qr Ar
Ve
A Bus Tie
|;:Q Block ¥ V
upB . - guarg ¢——
1B <> Proc ' vy
uw(C -
e C P> »?
1o E H A Bus Tie
O,
o,
UCW
LCW-
B Rus Tic
PORT
Block ¥ Y
;uarde——;—
Proc ¥V ¢
>
4 ——
B Bus Tie

C Bug Tieg W

Biock V 1

guard (e
Proc ¥y ¥

et 4

L

P

-2 E Bus Tie

Em_ngl‘u’
Block * v I

guard.

|

||

y
v

)

—

u.-.j.a.a.-. N]

ARCHITECTURE

Figure 5.6. Bus Ties Entity Structure Diagram

Ut

v
o
J

the busses. The block/process combinations that model the bus tie action for the B and E busses
are similar with the exception that the appropriate micro—fields are tested in the guard expres.ion

of their respective blocks.

Modeling the C Bus Tie required a different approach than was used with the precharged
busses. The architecture developed to model the action of the C Bus Tie models the behavior and
not necessarily how it is implemented in the FPASP. As before, the guard condition of the block
statement is True when PHII is zero and the C Bus Tie micro—field bit of the upper ROM control
word is *1". The sensitivity list of the nested process statement lists the implicit signal GUARD
as well as the upper and lower C busses. However, within the process statement, the values on
the C busses can not be ANDed together if the C Bus Tie is selected. Judicious care was taken
in developing the various design entities that model the components of the FPASP to insure that
if the C busses are not driven with a value, that they are assigned a null transaction to turn the
drivers off. This action assigns the default value of all Zs, or high impedance, to each driver that
is turned off. If a C Bus Tie is requested with only one bus active with a valid value, the other bus
will be in the high impedance state. This condition is tested for in the process statement, and the
bus in the high impedance state is assigned the value of the active bus. If both busses are active,
both busses not in the high impedance state, the values on the busses are ANDed together and the

result driven out onto each of the busses.

L

5.9 Function ROM Model: The Function ROM is a repository for seed values used in
recursive microcode routines and programs. The Function ROM consists of seven pages of 32 z 5
bit words. Indexing into the Function ROM requires the combination of data values on the upper
B bus and the Function ROM Select micro—field of the upper ROM word. Data read from the
Function ROM is placed on the upper C bus.

The port list for the entity declaration of the Function ROM model is shown below, and

consists of the upper B bus, the upper C bus, PHI1 and PHI2, and the upper ROM Control Word.

entity FUNCTION_ROM is

port (UB_.BUS :in BUS_TYPE bus;
UC_.BUS : out BUS_TYPE bus;
PHII s in BIT;
5-29

LV VR e e 4

Block V¥

GUARD—

LPROM
PORT Proc ¥ Txs5x32

1l
]
1

N !

Function Rom Sei

Exponent and Mantissa Bits

ARCHITECTURE

Figure 5.7. Function ROM Entity Structure Diagram

PHI2 :in BIT;
UCcw :in UPPER_ROM_WORD);
end FUNCTION_ROM;

The architecture developed to model the behavior of the Function ROM has a single block

statement with a nested process statement which is shown below in Figure 5.7.

The guard expression of the block statement is True when PHI1 is zero thereby enabling
the nested process statement. The sensitivity list of the process statement contains the name of
the implicit signal GUARD. The decoding of the Function ROM Select micro—field of the upper
ROM Control Word is performed using a case statement. The Function ROM Select micro—field
designates which of the seven Function ROM pages is to be read from. The 20** down to the 16'*
bit positions of the value on the upper B bus are used to determine which 5 bit word is read from a

selected page. The 20%* bit position is the least significant bit position of the exponent of a double

5-30

precision [EEE floatiug point number. Bit positions 19 down to 16 are the 5 most significant bits

of the mantissa.

The process statement slices the 20°* down to 16" bits from the value on the upper B bus and
conveits the bit string into an int ger. The case statement then tests each of the possivle Function
ROM Select micro- field combinations. Each of the seven Function ROM pages is associated with
one of the conditional tests of the case statement. If the proper page is found, the integer converted
bit-slice from the upper B bus is used to index into the array and the indexed value is driven onto
the upper C bus. If the Function ROM was not selected, the C bus signal associated with this

architecture is driven with a null value to turn the driver off.

5.5.10 Barrel Shifter Model: The Barrel Shifter is implemented in the FPASP to provide
the capability to perform circular left integer shifts that are greater than one. The Barrel Shifter
can be programmed to shift from either directly from the microcode, or from the Barrel Shifter
Set-up register. The Barrel Shifter Set-up register can be loaded from the five LSBs of the C bus.

This option provides the capability to set the shift amount from a previous calculation.

The port list for the entity declaration of the Barrel Shifter is shown below. and consists of

the lower A and C busses, PHI1 and PHI2, and the lower ROM Control Word.

entity BARREL_SHIFTER is
port (LALBUS :in BUS_TYPE bus;
LCBUS : out BUS_TYPE bus;

PHI1 :in BIT;
PHI2 1 in BIT;
LCW :in LOWER_ROM _WORD);

end BARREL_SHIFTER;

The architecture developed to model the behavior of the Barrel Shifter is shown in Figure 5.8.
The architecture has a single block statement that controls the loading of the Barrel Shifter Set-up

register, and a nested process stztement to model the behavior of the shifter.

The guard ceondition of the single block stutement is True on the falling edge of PHI2. and
when MSB of the Barrel Shifter Set- up micro-field is ‘1’. When the guard expression is True, the

five LSBs from the C bus are loaded into the Barrel Register. The guard expression of the block

5-31

Ay Py Ay Ay N
F 4 Barrel Shifter Set-u
A S !

5iSBs [poex ¥ ¥

y

~ |

!L Barrel Register

Barrei Shifter Cntri

r
Bloct ¥ ¥V

‘\urdl——l

Process i

v

A
~ A A

Shifter

\

Barre) Shifter Catrl

o N A ny R

ARCHITECTURE

Figure 5.8. Barrel Shifter En.itv Structure Diagram

5-32

with the nested process is True whenever PHII is ‘0’, and whenever the Barrel Shifter micro-field is
not “00000". The sensitivity list of the process statement contains the name of the implicit signal
GUARD. The body of the process statement further decodes the Barrel Shifter Control micro-field,
and performs the required number of left circular shifts from the appropriate control input. The

final output is placed back on the lower C bus.

3.5.11 Floating Point Adder/Subtractor Model: The Floating Point Adder/Subtractor is a
single macro-cell developed with combinational logic to perform addition and subtraction with
double precision IEEE floating point numbers with a latency of two clock cycles. For single floating
point additions or subtractions, an extra clock cycle is required to load the input registers to the
adder. The latency of tw~ clock cycles is obtained with repeated floating point operations in tight
loops where the adder can both read in new inputs and drive out previous results in the same clock

cycle.

The port list for the entity declaration of the Floating Point Adder/Subtractor is shown below
and declares the upper and lower A busses, the upper and lower B busses, the upper and lower C

busses, clock signals PHI1 and PHI2, and the upper ROM Centrol Word.

entity FP_ADDER is

port (UA_BUS : inout BUS_TYPE bus;
LA_BUS : inout BUS_TYPE bus;
UBBUS : inout BUS_TYPE bus;
LB_BUS :inout BUS_TYPE bus;
UC_BUS : inout BUS_TYPE bus;
LCBUS :inout BUS_TYPE tus;
PHI1 :in BIT;
PHI2 :in BIT;
UCW :in UPPER_ROM_WORD);

end FP_ADDER;

The architecture developed to model the behavior of the Floating Point Adder/Subtractor
has several block/process statement combinations, process statements, and block statements as

shown below in Figure 5.9.

5-33

T 0 S .F ~ oA

7L
Block
Proc v
! > a
> 2
_(Load FP
Fp Adder Cru ¢ Add
+ A Input Reg Y
UCW_‘> Fp Adder Crtl v
vy
Block 2+ B Input Reg) A
Drive FP
? Results
? —1
T Proc Y ¥
::: Do FP l—-r—"{ H:\z

A Temp Buffeel—t2m] 2 ~ ANAN
- ~ AOVF
Fp Adder Critl =2 A ADIF

FP
Addition/Subtraction
Subroutine

| ARCHITECTURE

Figure 5.9. Floating Point Adder Entity Structure Diagram

5-34

The Floating Point Adder has a block/process statement combination that loads the data
from the input busses to the input registers, followed by a process that performs the addition,

which is followed by a block/process combination tha. drives the sum onto the output busses.

The first block/process statement combination loads the adder’s input registers from the upper
and lower A busses, and the upper aud lower B busses. The guard condition of the block statement
is True with the falling edge of PHI2 and when the Floating Point Adder Contrnl micro—field selects
to load the input registers. The nested process statement assigns the contents on the busses o
appropriate input registers. The process siatement is sensitive to changes occurring in the input
registers. Anyv change to one of the input registers enables the process which conditionally test the
Floating Point Adder Control micro—field to determine if a floating point addition is requested.
If an addition is requested, a subroutine is called which performs the actnal addition. The values
contained in the input registers are passed to the subroutine. which in turn passes back the sum
and the values of any flags that were set as a result of the computation. The returned sum is driven
into holding registers after an 80ns delay. The last block/process statement drives the sum onto the
output busses. The guard condition of the block statement is True when PHI1 is zero and when the
Floating Point Adder Control micro—field decodes to drive the data out. The process statement
which is sensitive to the implicit signal GUARD drives the results held in the temporary kolding
registers onto the upper and lower C busses. A final block statement, whose guard conditi s
True with the falling edge of PH12 and when the Floating Point Adder Contre. micro—field de. .des

to drive results out, drives the flag values for the previous computation into the output flags.

The process developed to perform floating point subtraction is identical to that for floating
point addition. The only exception is that the sign flag of the number off the B busses is inverted

befare the addition.

5.5.12 Floating Point Multiplier Model: Like the Floating Point Adder, the Floating Point
Multiplier is a single macro-cell constructed using combinational logic to perform multiplication
of double precision IEEE floating point numbers. The Floating Point Multiplier is also capable of
multiplying two 32 bit integers which could generate a product that is 64 bits wide. Multiplication
of two floating point numbers can be performed in two clock cycles when the multiplication is

perforined repeatedly in tight loops. Otherwise, three clock cycles are required - the extra clock

cycle required to load the input registers.

The port list for the entity declaration of the design entity developed to model the Floating

Point Multiplier is shown below.

entity FP_MULT is

port (UA_BUS : inout BUS_TYPE bus;
LA_BUS : inout BUS_TYPE bus;
UBBUS :inout BUS_TYPE bus;
LB_BUS :incut BUS_TYPE bus;
UC_BUS : inout BUS_TYPE bus;
LCBUS :inout BUS_TYPE bus:

PHI1 tin BIT:
PHI2 in BIT;
UCW :in UPPER_ROM_WORDY;

end FP.MULT;

Shown in the port list are the upper and lower A busses, the upper ad lower B busses, the
upper and lower C busses, clock signals PHI1 and PHI2, and the upper ROM Control Word. The
architecture developed to model the behavior of the Floating Point Multiplier is identical to the

architecture developed for the Floating Point Adder and is given in Figure 5.10.

A block/process statement reads the data off the input busses and loads the multipliers input
registers. A single process statement which is sensitive the changes to the input registers performs
the multinlication by calling a subroutine wh™ h performs the actual multiplication. The product
returned from the subroutine is placed into temporary holding registers after an 80ns delay, and
the flag values returned from the subroutine are also placed in temporary registers. A second
block/process statement drives the product from the temporary registers onto the upper and lower

C busses.

The portion of the architecture that models the integer multiply function, also shown in Fig-
ure 5.10, is again identical to that for floating point multiplication. The only exception, other than
the differences in the Floating Point Multiplier Control micro—field, is that a separate subroutine

is used to perform the integer multiplication.

5.5.13 Ezternal Memory Modeling: Although nov an integral part of the FPASP. the ex

ternal memory the FPASP interfaces to must be modeled for the VHDL simulator to function.

5-36

D s T T T e e %

Block
upA —P— aj
oo Proc
uwp B —P»— = ‘
IDB? b S
upC -
' ¢ Load FP
bd(): FP Mult Ctrl hotl .\;ui(
¢12 + A Input Reg) 4
UCwWw—P— FP Mult Ctrl
Block ¥ ¥
PORT Drive FP T B InPu{ Reg
°d Pesults
< -~ .
‘ Proc Y ¥
l 2 Do FP &
2 Mult
[.
A.Temp Buffée 80ns 2 A ::
1
Block Y
—
| Proc v
2 a
2 9
2
¢ Load INT]

3

(o

[

o me Mule
FP Mult Ctri Muit

ARCHITECTURE

INT
MUIU { "ation
Subroutine

7+ A Input Reg) 4
T Moo fl |
v
Block v+ B Input Reg A
Drive INT
‘4 Results
‘ Proc ¥ ¥
R o
Temp Buffeet—20012 A

Figure 5.10. Floating Point Multiplier Entity Structure Diagram

Ut
v

&
i}

The external memory configuration consists of two banks of the 32K x 32 bit words. One for the
upper data path, and one for .he lower data path. The port list for the entity declaration of the
design entity declares the upper and lower address busses, the upper and lower D busses, both

clock signals. and both the upper and lower ROM control words as shown.

entity ASP_MEMORY is

port (UD_BUS :incut BUS_TYPE bus:
LD BUS : inout BUS_TYPE bus;
UP_ADD :in BUS_TYPE bus;
LO_ADD : in BUS_.TYPE bus;

PHI1 : in BIT;

PHI2 2 in BIT;

UCcw :in UPPER_ROM_WORD;
LCW :in LOWER_ROM_WORD);

end FPMULT;

The architecture of the external memory design entity is shown in Figure 5.11. The arcl.itec-
ture has two processes that read in the external memory files to initialize the memory arrays - one
process for the even memory bank and the other for the odd memory bank. The processes then
convert the bit-strings on the address busses to integers, and if a memory write is not requested,
the memory arrays are indexed into and the memory array values are placed in temporary registers.
If a memory write is requested, the values on the D busses are written into the memory arrays.
i’hese two processes also monitor the Done flag. When the Done flag is raised, the processes dump

the contents of their respective memory banks to external disk files.

Placement of the memory contents stored in temporary registers onto the D busses is done by
two block/process statements. These block/process statements monitor the Memory Write Enable
Bar and the Memory Output Enable Bar micro—fields of both the upper and lower ROM control

words, If a memory write is not requested, the contents of the temporary registers are driven onto

the D busses.

5.5.14 Top-Level Design Unit: The top-level design unit of the VHDL simulator ties all
the individual arctitectures together into an executable model. The top-level design unit has no

port list in iis declaration section. All of the busses, ciock signals, and ROM control words are

LV VI T I, e B VW)
(MEven
Memory
- Proc Bank
wD 12 x 12K
w ADD—P» >
loD y ‘-———‘-—’e] l———N
o ADD—P» 1l
Up Mem Wr En N
‘Dl] Even Mem Write x
¢2 ‘_’
ucw—>-]
LCW Upper Mem Wr Enable l
Block ¥V ¥
PORT o
GUARDE
ProcT
[2 P
Even Mem Read
MOdd
emo
Proc Banl:y
32 x 32K
Lo Mem Wr Ea | 044 \em write R
1,13“;1“:&5[
Block ¥ ¥
GUARDE™]
Proc v
oT = s
L L3l

gt {

ARCHITECTURE

Figure 5.11. External Memory Entity Structure Diagram

5-39

declared in the architecture of the unit. and all the architectures modeling the components of the
FPASP are instantiated in unit. The top-level design unit can be viewed as a back-plane that all

the components are plugged into.

5.6 VHDL Simulator Testing

The same test plan that was developed for the logic simulator was used with the VHDL sim-
ulator. The small microcode test programs that tested the transferring of data between registers,
the functions of the ALUs and Linear Shifters. the Floating Point Adder and Multiplier, the Literal
Inserter. Bus Ties. and external memory were used to test the VHDL simulator. The matrix mul-
tiplication and Newton Raphson Inversion microcode programs were also executed with the VHDL
simulator to test the conditional branching and subroutine call functions of the microsequencer.
As stated in the requireinents, tie ¢ PASY VHDL simutator had to generate the same output tiles
as the logic simulator. The FPASP state file shows the register contents and the values on the bus
during each simulation cycle, and the memory files allow an examination of the external memory
contents after the simulation has terminated. These files are the key to determining if the VHDL
simulator correctly executed a microrode program. However, they are only gross indicators of how
well the VHDL simulator matches the designed timing requirements of the FPASP. To observe the
timing aspects of the VHDL simulator, it is necessary to use the Report Generator provided in the

VHDL support environment.

The Report Generator allows a user tv look at signal transactions selectively. The user
generates a Report Control Language text file listing the signals to be observed, and the Report
Generator compiles a listing showing each transaction that occurred to the signal as well as the

simulated time that it occurred.

The test plan used for the logic simulator was modified to include the development of Report
Control Language files for each of the inicrocode test programs. The microcode programs were
simulated and the FPASP state file and the memory files were examined to determine if the code
was executed correctly by the simulator. The Report Generator was invoked next using the Report
Control Language file for that particular microcode program. The listing generated by the Report

Generator was examined to observe timing of the signal transactions. The design of the FPASP

5-40

could then be said to be validated if the all the microcode programs executed correctly and the

timing of the selected signal transactions occurred within the limitations set forth by the designer.

VI Kalman Filter Microcode Development

6.1 Introduction

The rapid prototyping of the FPASP begins with the identification of an application which
could best be served by the FPASP. Such applications are computationally intensive, can be
specified algorithmically, and do not have special hardware requirements bevond those provided by
the FPASP. The application chosen for this thesis is the Kalman Filter algorithm. The Kalman
Filter algorithm is characterized by the large number of matrix algebra computations required to
arrive at a solution. The benefits expected by implementing the Kalman Filter algorithm with the

FPASP are a decrease in execution times without a degradation computational precision.

This chapter will look at the Kalman Filter from the viewpoint of the algorithm structure and
not the theory. The data structures required by one Filter uses are identificd, and the computations
that must be performed are examined in detail. The chapter will also provide an introduction to
programming with the FPASP microcode as the translation of the Kalman Filter algorithm is

explained.

6.2 The Kalman Filter Algorithm

The Kalman Filter can be used in any application that cannot be observed directly to provide
an inference of hidden values of interest from external measurements. The Kalman Filter can be
defined as an optimal recursive data processing algorithm that estimates the state of a system
indirectly (May79). The optimal nature of the Filter is beyond the scope of this thesis, however,
the recursive description implies that the Filter does not require all previous data to be kept in
storage and reprocessed every time a new measurement is taken. The fa-~ <. ' the Filter is a data

processing algorithm implies the Filter is just a computer program.

The Kalman Fiiter is dependent on a number of externally initialized matrices to provide
input data. Intermediate result matrices are calculated which are used by two routines, propagate
~nd undate, to compute the estimates of the system state. The propagation routine can be called
independent of the update routin:. However, before an update can be performed, a propagation

must be performed.

6-1

6.2.1 [Imtial Data Structures: The Kalman Filter is slowed in the U=D factorized form in
double precision. [t performs a number of computations on matrix and vector data structures to
arrive at an estimate of the state of a process. Many of these matrices and vectors must be initialized
prior to invoking the Filter. The matrices and vectors that must be initialized are: the n-by-n
system dynamics matrir, F(¢,_1) (n is the number of state variables); the n-by-s noise distribution
matrir, G{t;) (s is the number of process noises); the s-by- s driving noise strength matriz. G{¢,):
the m-bv-1 measurement noise strength matriz, R(t;) (m is the number of measurements): the
n-by-p discrete control inpul distribution matriz, B4(t,_,) (p is the number of controls); the p-by-1
controls input matriz, u(t;,_,); the m-by-1 measurement matriz, Z; the m-by-» <late observation
matrir, H(t;); the n-by-1 state vector, x(t]); the initial upper triangular factorization of the state

covariance matrir, Ut), and the initial diagonal matrix of the state covariance matriz, D(t]).

The data structures identified above must be initialized by the host system prior to com-
manding the FPASP to begin its computations. Initializing the matrices requires that the host
system access the external memory of the FPASP and write the matrix elements into memory 1n
row—major forin, one matrix after the other, in a predetermined order. The order the matrices

must be loaded will be discussed later.

6.2.2 Computed Data Structures: The Kalman Filter algorithm performs several interme-
diate computations in the propagation routine. Computed are the n- by-n state transition matriz,
$(ti,t;_1), and the n-by-n discretized covariance matriz of process noises, Qq(t;_1), which is fac-
torized into the upper triangular matrix Gr(¢;), and the diagonal matrix Qp(?;). The update
routine computes the Kalman gain matriz, K(t;) which is used to update the measurements into

the measurement matrix z.

6.2.3 Propagation Calculations: The propagation routine propagates the state value esti-
mates and the covariance matrix forward to the next sample time. The routine has been broken

into five steps.

The first step of the propagation routine calculates the state transition matriz, &(t;,t;_1),

6-2

using the series approximation
= 1
St tio) =1+ Fpk(n_l)m"
k=1 """

where I is the identity matrix. Provisions are made for multiple propagation steps to account for
time variations in F(¢). This computation is performed for each propagation to propagate forward
any changes in the F matrix that may have occurred in the interval At. The number of summations,
r. performed donends on somewhat on the size of At, and how accurate the approximation ueeds
to be. This variable z, as well as the At, are user selectable and needs to be set before performing
the computation. Provisions are made for negative At, should the arrival time of a measurement

require it.

The second step uses the approximated ® matrix calculated in the first step along with the

matrices G and Q to calculate the first order appreximation of Qg(t;-1) as follows

Qu(tic1) = = [#(t;,t;1)G Q GT + (¥(ti,t;i.1)C Q GT)T]

o |

This step propagates any changes in the ¢ matrix which resulted from changes in the F matrix in

the interval At.

The propagation of the state values is performed in the third step as follows

x(ti) = D(ti, tio1)x(tim1) + Ba(tim1)u(tioy)

The discretized covariance matriz of process noises, Qq(t;_1), is factorized into the upper
triangular matrix Gg4(t;), and the diagonal matrix Qg(t;) in the fourth step. Substituting matrix

names to clear up subscripting

L =Q,(ti-1) M=Qp(t) N=Gr(t)

for the last (nt* column) let

Mnn = Lnn

6-3

]
3
|
—
&
|
to
—

for the other columns, j

[0 ifi>j
(L,J - ZE:,H MkkN‘k.N}k) /M,, otherwise

This step completes computing the data structures required for the propagation routine.

Step five performs the UD propagation and contains the bulk of the routine. A temporary

matrix, T, is formed taking the product of the & and U matrices.
T = $(tis1,t)U(L))
The Gr(t;) matrix calculated in step four is appended to the T
Y(t5,)=[T : Gr(t)]
forming an n X 2n Y matrix. The D(t]) matrix is extended diagonally with the Qp(¢;) matrix

D(tf) : o0
D(ti—ﬂ):

0 Qp(t)
generating a 2n X 2n matrix.

Viewing YT(t},) as n column vectors of length 2n

YT(t;H) = [a1 (122 fan]

6-4

the routine then iterates on the following relations fork = n.,n~1,...,1:

Cky = Djj(ti—+1)akj j=12,....2n
Dik(ty,) = aic
di = ci/Drltiyy)
Ui(tn,) = aTde 1
S !) =20 k=
aj - - Ujk(t,'+1)aj J

where — denotes the replacement, or writing over old variables. On the last iteration, for & = 1,

only the first two relations need he computed.

6.2.4 Update Calculations: The update routine incorporates external measurements into

the filter estimates. At time ¢;, U(¢;) and D(¢;) are available from the previous time propagation.

Using the measurement value z;, the i** column vector of H, and the scaler 1~by~1 matrix R

[,
H

v,

I

Then, for k = 1,2,...,n, calculate

Qf
Du(t})
b

Pk

uT (7 HT (1)
D,;(t7)f; j=12,....n

a():R

ak_1+ fevk
Dk (8])ak—1/ak
vk

—fk/ak—l

6-5

Uﬂc(t;}.) = Ujk(t{.)+b,'pk
b, — b, + Ut ek

After n iterations. U(!j’) and D(t?’) have been computed, and the filter gain K(t,) can be calculated
in terms of the n-vector b made up of the components b,,b6,,....6, computed above. The state is

then updated as

x(tF)y = (7)) + K(4) |2 - H{t))x(t])

6.3 Microcode Development

[t was noted in the previous sections that the Kalman Filter algorithm can be broken down to
a series of initial data structures, computed data structures, and various calculations. The primary
requirement for the developed microcode is to accurately and quickly implement the Kalman Filter.
The various calculations highlight the large number of matrix algebra operations that need to be
performed implying the microcode must efficiently perform these type of computations. Aside
from being quick, the microcode must also efficiently use the external memory. The recursive
nature of the Kalman Filter means that not all of the computations must be performed every time.
This necessarily means that these intermediate results must be maintained in memory. This is in
addition to the memory requirements for the initial matrices. The following sections will discuss
the memory requirements of the Kalman Filter, the microcode subroutines developed to support

the Filter calculations, and the Filter microcode development.

6.3.1 Memory Considerations: The Kalman Filter microcode must be efficient with its use
of external memory. The performance of the FPASP will be setiously degraded if the host system
must reinitialize the Filter data structures prior to every propagation or update. For optimal
utilization of the memory, the microcode must allow for as many of the initial data structures to
remain intact as possible, and still provide enough storage capacity to support computations. At

most, it is expected that the FPASP must be able to compute a 64—state Kalman Filter. For this

6-6

size Filter, the number of states n is 6.4, the number of measurements m is 32, the number of process
noises s ts 32, and the number of controls pis 16. The total initial memory requirements including
reserved memory locations is 14,794 words. With a total external memory capacity expected to
be 32,768 words, this leaves 18,174 words for intermediate computation and storage. The initial

FPASP miemory map is shown in Figure 6.1.

The first 32 words are reserved for error diagnostics and an instruction word at location U0,
The U in the memory index indicates the upper memory bank. The instruction word at location
U0 is used to indicate to the Kalman Filter microcode whether a propagation is to be perforu.ed.
or an update. The number of controls. p. is placed in U32. and the number of process noises, . ix
placed in L32. The number of series expansions to be used in calculating ®. . is placed in U33, an
the number of state variables, n. is placed in L33. The number of measurements, m. is placed in

U34, and a pointer to the beginning of the {'(¢;

T)is placed in L34. Memory locations UL35 through

UL40 are unused. The current time stamp. ¢;, which is supplied by the host system, is placed in
memory location UL41. The current time stamp is a double precision IEEE floating point number.
The most significant 32 bits of the number are placed in U41. and the least significant 32 bits are
placed in L41. The previous time stamp, ¢;,_; is placed in UL42, and [ike the current time stamp.
it too is a double precision IEEE floating point number. The previous time stamp needs to be
initialized to 0.00 only once prior to the first time propagation. This value will then be maintained
by the microcode program. Each of the initial data structures are stored in row—major form with
the first element of the first data structure stored at memory location UL50. Each data structure
is then placed one after the other until all are in memory. The rest of the external memory is

available for the computed data structures and as scratch memory for computations.

With the initial data structures mapped into external memory, it is now possible to begin
the development of the Kalman Filter microcode. The initial mapping was necessary because
the FPASP has no facilities for indirect addressing, and the primitive GMAT assembler has no
provisions for associating a label with a memory location. Therefore, it is necessary to hardcode

each memory location that must be written to or read from.

6.3.2 Microcode Subroutines: The Kalman Filter microcode program makes use of several

microcode subroutines during the course of its computations. The most used microcode subroutine

FPASP MEMORY MAP

“— bottom of memory

0 - 31 Reserved

p | s -— 32
X | N -— 33
M] last pos -— 3y
35 - 40 unused
ti -— 1
iy -— 12

43 - 49 reserved <— 50 beginning of

G (nxs) matrices

(sxs)

(nxn)

(mxn)

(mx1)
(px1)

Q
F
B (nxp)
H
4
u
R

(mx1)
X (nx1)

- <— pointed to by
Ut)(nxn) last pos

D(ti-) (nxl)

Figure 6.1. Initial Memory Map

6-8

is the Matiix Multiply routine developed by Capt John Comtois as part of his thesis {Comx¥).

The basic operation in matrix mulitiplication is the dot product of two vectors where the elements
of each vector are multiplied together and accumulated into a final result. For two vectors of size
n, there are 2 multiplies and (» — 1) additions required to compute the dot product. One of
the primary obje.tives of implementing the Kalman Filter with FPASP is tc realize a significant
decrease in executions times. It is anticipated that it will require approximately three miilion
floating point operations to compute a 64—state Kalman Filter, with a large percentage of the
operations being performed in matrix multiplication. A matrix muitiply routine that efficiently
uses the FPASP floating point hardware is essential to rnsuring the Kalman Filter microcode
program meets the requirement of increased execution time. Before looking at the matrix multiply
subroutine developed by Capt Comtois, it would he'p to look at the operation of the floating point

hardware, and how the hardware can efficiently be used in performing operations on data arravs.

It was previously noted that latency of the floating point hardware is 2 clock cycles if the
floating point operation is being performed in a loop where the adder or multiplier can be loaded
and read in the same clock cycle. Otherwise, a latency of three clock cycles is required because of
the extra cycle required to load the adder or multiplier. The following example illustrates how a

floating point operation is placed in a loop to provide a latency of 2 clock cycles.

1) SAMPLE: BPT+ MAR=EU ETIE E=BPT
‘ MAR=EL:
] R1=DU
R1=DL;
3y AU=R1 BU=R25 FP*L
AL=R1 BL=R2S;
5 FP* BPT+ UIN1+ MAR=EU ETIE E=BPT
' MAR=EL;
5 R1=DU
R1=DL;
Loop:
6y AU=R1 BU=R25 MBR=CU FP'LD APT+ RI1=DU MAR=EU ETI. E=APT UININ BR
AL=R1 BL=R25 MBR=CL R1=DL MAR=EL LOOP;
n BPf+ UINi+ MAR=EU ETIE E=BPT WEBU
MAR=EL WEBL;

In this example, a vector is stored in external memory, and the program will scaler multiply
the vector and store the results to a second memory location. The first code line (each code line
consists of two mnemonic lines; one for the upper ROM and one for the iower ROM) loads both the

upper and lower MARs with an address to external memory from the B memory address pointer.

The B memory address pointer is simultancously incremented to the next address location. The
effect of incrementing the address will not be sensed at the output of the address pointer until
the next clock cvele. The second code lire reads in the contents at the external memory location
into the upper aud lower general purpose registers R1. The third code line loads the floating point
multiplier with the memory value from the Rls and a previously stored scalar value from the R25s.
The next line of code performs the multiplication and reloads the NMARs with the address to the
next element of the vector. Also, the upper incrementable register. UIN1, is being used to count the
number of iterations of the loop. tlere UIN1 is incremented to reflect the fact that one element has
been read in and scalar multiplied. The fifth line of code is necessary to read in the next ¢lement
of the vector prior to entering the loop. The main loop begins in the sixth line of code. The next
vector element and the scalar value is loaded into the floating point multiplier at the same time the
previous product is being driven out into the upper and lower MBRs. The address for the result is
placed into the MARs from the A memory pointer, and the next element of the vector is read into
the R1s. UIN1 is checked to see if it has incremented to zero. If it hasn’t, a conditional branch
will be made to the label LOOP. Because of the pipeline architecture of the FPASP, the next line
of code after a conditional branch is always executed prior to the branch. Making use of this. the
seventh line of code writes the result from the MBRs out to memory, reloads i« MARs with the
address to the next element of the input vector, and increments UIN1. The program continues in

this fashion until UIN1 increments to zero, and the program falls through the loop.

The example program above illustrates the number of preparatory steps required to set up
the registers, counters, and pointers prior to entering the loop. At first, this may seem an inefficient
way to code the scalar multiplication of a vector. In the true sense of software design, this may
be true, however, the intent is program in a way to use the FPASP hardware in the most efficient
way possible to minimize the number of clock cycles required for a particular operation. In this
program, it will require 5 + 2(n — 1) clock cycles to scalar multiply a vector with n elements. If n

is large, the 5 clock cycles required to prepare the registers becomes insignificant.

6.3.2.1 Matriz Multiply: The matrix multiply routine developed by Capt Comtois is
a double—nested lnop, with a dot product routine in the inner loop. For square matrices with

n vectors, the dot product routine must be called n? times with each dot product performing n

multiplies and (n ~ 1) additions. Thus. n® multiplies and n%(n — 1) additions must be done for each
matrix multiplication. 1he inner loop. or the dot product routine is shown below and it performs

not only floating point multiplication, but also floating point addition in the same loop.

, DOTE: R25=CU GNDCU R1=DU MAR=EU ETIE E=APT
R25=CL GNDCL R1=DL MAR=EL;
2) AU=R2S BU=R2S FP+L MB=DU MAR=EU ETIE E=BPT
AL=R25 BL=R2S MB=DL MAR=EL;
3 AU=MBR BU=R1 FP*L FP+ APT+ RI1=DU MAR=EU ETIE E=APT
AL=MBR BL=R! LIN1+ RI=DL MAR=EL;
DPLOOP:
4 AU=R25 BU=FP+ FP* FP+L BPT+ MB=DU MAR=EU ETIE E=BPT LININ BR
AL=R25 BL=FP+ MB=DL MAR=EL DPLOOP;
s) AUsMBR BU=R1 R25-CU FP'LD FP+ APT+ RI1=DU MAR=EU ETIE E=APT
AL=MBR BL=Rl R25=CL LIN1+ R1=DL MAR=EL;
61 AU=R25 BU=FP+ FP+L
AL=R25 BL=FP+;
7 AU=R22 PASSU FP+ MAR=EU ETIE
PASSL MAR=EL;
8 R25=CU FP+D TRU RET
_ R25=CL;
9) AU=R2S MBR=CU MOVUN PASSU
AL=R25 MBR=CL MOVLN PASSL;

The first three lines of code in the dot product subroutine prepare registers and the floating
point hardware prior to entering the loop that performs the multiplications and accumulates the
products. The first line of code clears the R25s to zero which will accumulate the products, and
reads in the first element from one of the vectors from memory. The second code line clears the
floating point adder by loading it with zero, and reads in the first element from the other vector
from memory. The third line of code loads the floating point multiplier with the first elements
from voth vectors, reads in the second element from the first vector from memory, and increments
the loop counter. The actual dot product loop begins with the fourth line of code. On initial entry
into the loop, the floating point adder is loaded with the contents of the R25s and the output of
the floating point adder. Since both have been initialized to zero, the result will be zero also. Still
in the fourth line of code, the next element of the second vector is read in from memory, and an
conditional branch back through the loop is selected should the loop counter not be equal to zero.
In the fifth line of code, the next two elements are loaded into the floating point multiplier, the
next element of the first vector is read in frem memory, and the loop counter is incremented. The

fourth and fifth lines of code are repeated until the loop counter reaches zero. Each time through

6-11

the loop, the contents of the R25s are added to the current sum in the floating point adder. Exiting
the loop, the last product to be accumulated is loaded into the floating point adder from the R25s
in the sixth line of code, added in the seventh line of code, and driven into the R25s for a last time
in the eighth line of code. The subroutine is complete and an unconditional return is made to the

calling routine after placing the dot product into the MBRs.

The outside loop (this portion of the subroutine can be reviewed in Appendix B) of the matrix
multiply routine is responsible for initializing the registers and pointers to each succeeding vector
in the matrix. The total number of clock cycles required by the matrix multiply subroutine to

multiply a m-by-n times n-byv-p is

Matrix Multiply Clock Cycles = 2pmn + 11pm +2p - 1

Multiplying two 64—by—64 matrices together using the matrix multiply subroutine will require
569,471 clock cycles to perform the required 266, 176 floating point operations. A useful metric
for examining the efficiency of a microcode routine is the ratio of floating point operations to the
number of clock cycles. For any given routine, the optimal execution time is equal to the total
number of floating point operations required times the period of the clock. Therefore, the ratio of
the floating point operations to clock cycles indicates the overall utilization of the floating point
hardware and how close the routine is to being optimal. Taking the ratio of floating point operations
to clock cycles for the matrix multiply routine yields a 0.4674 utilization factor for the floating point
hardware. Had the code been designed inefficiently with three lines of code in the inner dot product
loop, the number of clock cycles required to multiply the same two 64—by—64 matrices would have

jumped to 831,615 dropping the utilization factor to 0.32.

6.3.2.2 Matriz Addition: The next subroutine developed to support the Kalman Filter
microcode program is the matrix addition subroutine. As with the matrix multiply subroutine, the
code was designed to make efficient use of the floating point hardware by making the addition loop
as tight as possible. The significant difference between the multiply and addition subroutines, is
that the addition routine requires two memory reads and one memory write each time through the
loop. Since one complete clock cycle is required for each memory access, the optimum number of

code lines within the loop is three. The addition subroutine is a double—nested loop in which the

6-12

inner loop performs vector addition. The outer loop sets up the registers and memory pointers for
each successive vector in the two matrices. The number of clock cycles required to add two m-byv-n
matrices is

Matrix Addition Clock Cycles = 4nm + 5m

which. for two 64—by—64 matrices, equates to 16,704 clock cycles to perform the necessary 1096

floating point additions. The utilization factor for the floating point hardware is 0.245

In retrospect, the matrix addition subroutine does not use the floating point hardware as
efficiently as it could. The main fault is that there are four code lines in the inner addition loop
where the optiinum number could be three. The developinent of this subroutine occurred early in
the learning curve of FPASP microcode development. A more efficient means to add to matrices
is to utilize the fact that the matrices are stored in row—major form and treat both matrices as
extended vectors. Doing so, there would be a need for only one loop rather than the double—nested
loop currently implemented. Perhaps in a later version of the Kalman Filter microcode program
this avenue will be explored, however, the gain in increased hardware utilization will not be that
significant. At best, the number of clock cycles required for matrix addition is 3mn for two m-
by-n matrices. For two 64—by—64 matrices this equates to 12,288 clock cycles yielding a 0.3333
utilization factor for the floating point adder. This is only a 8.83% increase over the current

implementation.

6.3.2.3 Matriz Scalar Multiplication: A third subroutine developed to support the
Kalman Filter microcode program is the Matrix Scalar Multiplication subroutine. This is an
extremely efficient routine that makes use of the fact that matrices are stored in row—major form.
The entire subroutine uses seven lines of microcode. The first four microcode lines initialize the
registers and memory pointers, and load the floating point multiplier with the first matrix element.
The next two microcode lines form the multiplication loop that reads in successive matrix elements,
performs the scalar multiplication, and writes the products out to memory. The entire subroutine
requires only 2mn+ 4 clock cycles, which for a 64—by—64 matrix equates to 8, 196 clock cycles. The
optimum number of clock cycles for scalar multiplication is 2mn which for the same size matrix is

8,192 clock cycles. The efficiency of this subroutine is 99.95%.

6-13

6.3.2.4 Newton— Raphson Inversion: The fourth and last subroutine used by the Kalman
Filter microcode program is the elegant adaptation of the Nowiou—Rapnson method developed by
Capt John Comtois (Com88). The FPASP does not have a floating point divider, and the recip-
rocal of a floating point number is required in several of the Kalman Filter computations. The
Newton—Raphson method approximates the reciprocal of a number using only floating point mul-

tiplication and floating point addition (Cav84). The Newton—Raphson method

Tijy = 7i(2 -~ Bz,)

iterates recursively until

ALty
and

_lim Bl‘,‘ =1

1—0o0

The objective is to develop a quotient with as few iterations as possible, and with the least number
of steps per iteration. A ROM used to contain a table of initial values for z¢ that can be indexed by
the high—order bits of the divisor can greatly reduce the initial error thereby reducing the number

of iterations.

6-14

Shown below is the microcode developed by Capt Comtois based on this scheme of storing

initial values in the FPASP Function ROM.

D BU=R25 R23=CU NANDU PASSU IMZU
, R23=CL GNDCL #1111111111110000;

) BU=R23 R23=CU ADDU PASSU IMZU
. #0111111111110000;

3’ BU=R23 R24=CU RCP
. R24=CL GNCL;

4) 'AU=R23 BU=R24 R23=CU ORU PASSU IMZU
. #1111111111111100:

5’ R24=CU PASSU IMZU
, #0100000000000000;

6) 'AU=R2S BU=R23 FP*L TRU BR
AL=R25 BL=R23 RLPZ;

7' IN1=CL FP* ILNL
] MOVLN PASSL #1111111111111101;
RLP:

8) AU=R25 BU=FP* FPLD
AL=R25 BL=FP*;

9 FP* TRES CALL
_ TRAP;
'RLP2:

10) AU=R24 BU=FP* FP*D FP-L
AL=R24 BL=FP*;

- FP- TRPS CALL
. TRAP;

12) AU=R23 BU=FP+ FP*L
AL=R23 BL=FP+;

13 FP* TRPS CALL
. LIN1+ TRAP;

14 LININ BR
. RLP;

15)) R23=CU FP*D

R23=CL;
1) TRU RET;

In Capt Comtois’ routine, the number to be inverted, or divisor, is used to generate a seed
for selecting the initial value for z¢ from the Function ROM. The divisor is in the R25s, and the
quotient is returned in the R23s. To generate the seed, the first line of microcode uses the Literal
Inserter to insert a mask on the upper A bus which isolates the sign bit and the exponent bits of
the divisor. The sign and exponent bits are then inverted by the NAND operation of the upper
ALU. The second line of microcode adds 1022 to the exponent. The result is -e-1 in IEEE format.
The sign bit gets re—inverted back to its original value as a result of the carry out of the exponent

addition. This seed is then placed on the upper B bus in the third line of microcode to index

6-15

into the Function ROM and the partial initial value for zg is place in UR24. In the fourth line of
microcode, partial initial value from the Function ROM is added to the seed value used to index
into the Function ROM, and the bits in the resultant mantissa are ANDed off by the value inserted
on the upper A bus by the Literal Inserter. The resultant value is the initial quess, or the initial
value for ro. This method of determining the initial value for zy insures that only four iterations
are required to arrive at a quotient. Carefully tracing through the rest of the routine shows that
Newton—~Raphson’s iterative method is begin performed as given in the above equation. For any
given divisor, the number of clock cycles required by this routine to arrive at a quotient is constant
at 31 clock cycles. The number of floating point operations performed is also constant at 12 yielding
an utilization factor of 0.387 for the subroutine. However, at 25MHz, it takes only 1.26usecs to
calculate the inverse of a number, and a few more percentage points one way or the other will be

of little consequence in the overall timing requirements of the program.

6.3.3 Propagation Routine: The propagation routine was derived directly from the propa-
gation calculations presented in section 6.2.3. The routine begins by computing ®(¢,,¢,_,) which is
then followed by the propagation of the state values in z(t;). The routine then computes Qq4(t;_;),
and then factorizes Qg(t;_;) into Qq(t;) and G4(t;). Finally, the routine performs the UD propa-
gation and returns to the calling higher—level routine. This section will examine each phase of the

propagation routine.

6.3.3.1 Computing ®(t;,t;_1): The computation of &(t;,t;_y) is performed first in
the propagation routine. The algorithm developed to calculate ®(t;,¢,_;) is shown below in a

pseudocode format as it is implemented in microcode.

At =1t; - t;_,

for j=1ton?do
T\[5] = Flj] x Al streat F and T} as extended vectors
Tal5] = F{j]

end for

forj=1tondo

T5lli) = s} + 1.0
end for

6-16

if z = 1 skip the rest
fori =2toz do
SCALAR = At'/id!
for j=1tondo
for k=1to ndo
T3[k][j] =0
for!l=1tondo
T3(k](j] = T2[k][1]x F{{4]
end for
T [k)lj] = Tilk)li] + (T3[K][j] x SCALAR)
end for
end for
for j =1 ton? do
To[j] = T3[5]
end for
end for

This portion of the propagation routine approximates ®(2,,%,_1) by performing a truncated
matrix exponential (May79). The code begins by subtracting the previous time stamp from the
current time stamp to determine At for the propagation. Treating the F matrix as an extended
vector, the routine then scalar multiplies F by At in a single loop placing the results in the tem-
porary matrix T;. In the same loop, a copy of F is placed in the temporary matrix Ty. In the
actual microcode, this is accomplished setting a second pointer to point to the F matrix. The
identity matrix, I, is then added to the T; matrix. This is performed by simply adding one to
each diagonal element. Next z, the number of series expansions, is tested. If z is one, ®(¢;,¢,_;1) is
computed and a pointer is set to point to the beginning of T,. Otherwise, a loop is entered that
for i = 2 to z, performs the remaining iterations of the series expansion. Once inside the loop,
the microcode calculates i factorial. This is performed using two register sets. Both register sets
are initialized to 1.00. Register set two is incremented by one each time through the loop, and the
value in register set one is multiplied by the value in register set two each time through the loop
generating the appropriate factorial. The Newton—Raphson Inversion subroutine is used for each
iteration to calculate the inverse of the factorial. Raising At to the appropriate power is done is a
similar fashion. Onr+ register set which was initialized to At is multiplied by At each time through

the loop. A scalar value of At'/i! is then computed. Two n-by-n scratch areas of memory, T, and

6-17

Tj, are required to compute the powers of the F matrix. To perform the remaining computations
in the series expansion requires a matrix multiplication, followed be a scalar/matrix multiplication,
and finally a matrix addition. This could have been performed by making unconditional calls to
the appropriate subroutines. This would however incur unnecessary overhead. To overcome this,
the matrix multiply routine was modified to perform all three operations at once. After each dot
product, the result is multiplied by the scalar value computed above, and added to the appropri-
ate element in the T; matrix. The updating of T, with the new power of F is depicted in the
pseudocode as transferring the element values from T3 to T, in a loop. The microcode performs
this operation by swapping pointers to the beginning of the matrices. When this portion of the
routine is complete, T; is ®(¢,,¢,-1) and a pointer is set to the beginning of the matrix that can

be referenced later.

The number of clock cycles required to compute $(2;,¢;_1) is dependent or z. Counting up
everything, it will require 2n242n+39+(2n3+19n2+50)(z—1) clock cycles. The number of floating
point operations required are also dependent on z and are n? + n+ 1+ (2n3 4+ n? + 16)(z — 1). For
a 64—by~64 matrix and z = 1, 8359 clock cycles are required, and 4161 floating point operaticns
vielding a hardware utilization factor of 0.497. For the same matrix size and z = 2, 610521 clock
cycles are required, and 532561 floating point operations, which yields a hardware utilization factor

of 0.872.

6.3.3.2 Propagating State Values: After computing ®(t;,t;_1), the state values in
Z(t;_1) are propagated. An algorithm derived from the arithmetic calculations was developed

to propagate the state values and is shown below.

fori=1to1do
forj=1tondo
Tils]ls] =0
fork=1tondo
T5]0i) = (ks ti)[J)IK) x (2[RI
end for
end for
end for
if M[0] bit 31 = 1 then

6-18

fort=1to1ldo
forj=1tondo
Tyilli] = 0
fork=1topdo
To5)li] = Ba(ti—1)[7](k] x a(t;)[¥][2]
end for
end for
end for
fort=1ton do
Z(t)[i] = Ta2]1] + To[d(1]
end for
end if

This portion of the propagation routine begins by calculating the matrix product of ®(¢;,t;_;)
and Z(t;_,). To perform this operation, the microcode initializes the necessary registers and pointers
with the array sizes and the beginning addresses to the matrices, and then calls the matrix multiply
subroutine. The results of the matrix multiplication are placed in a temporary scratch area of
memory. After returning from the matrix multiplication subroutine, the microcode then tests the
most significant bit of the word in external memory at location zero. If this bit is set, the controls
inputs are computed and added to the previous result. The matrix multiplication subroutine is used
to compute the product of the two matrices, By(t;—;) and @(t;—;). The matrix addition subroutine
is then used to add the two results together. The final result, (¢;), is in the temporary scratch area
of memory. Z(t;) is moved from the temporary scratch area, and is overwritten into the memory

area containing Z(t;_;) at the completion of the propagation routine.

The number of clock cycles required to propagate the state values is 2n? + 13n + 22 if the
MSB of M[0] is 0. Otherwise, it requires 2n? + 2np + 13(n + p) + 29 clock cycles. The number of
floating point operations are easily calculated and are 2n% — n for the case where the MSB of M|0]
is ‘0’, and 2n? + 2np — 2n when the MSB of M[0] is ‘1’. For dimension sizes of n equal to 64, and
p equal to 32, 9046 clock cycles. and 8128 floating point operations are required for the case when
the MSB of M[0] is ‘0’. In the case when the MSB of M[0] is ‘1’, 13536 clock cycles, and 12160
floating point operations are required. The first case realizes a hardware utilization factor of 0.898,

and the second case realizes a hardware utilization factor of 0.898 also.

6.3.3.3 Computing Q (t;—1): After propagating the state values in £(¢,_), the prop-
agation routine computes Q ((t,_;). The algorithm derived from the propagation calculations is

shown below.

fori =1to s do
forj=1tondo
Tl[j][i] =0
fork=1tondo
T [5]i] = S(ti, ti-2)[F1[k] x Gl¥](¢]
end for
end for
end for
fort=1to s do
forj=1tondo
T.[j][i] =0
fork=1tosdo
To[5](s] = T1[5](k] x Q[k](z]
end for
end for
end for
fori =1ton do
forj=1tondo
Tl[j][i] =0
fork=1to s do
T1(j}(i] = Talj](k] x G[i](]
end for
end for
end for
fori=1tondo
for j=1tondo
Talil] = Talills]) + Tl
end for
end for
end for
fori = 1 to n? do
Qu(tiii] = Tali] x At/2
end for

6-20

This portion of the microcode begins by multiplying ®(t:,t;_1) and G together and placing
the results in the temporary matrix T;. T; is then multiplied by Q, and the results are placed
in temporary matrix T3. T; is then multiplied by GT and the results placed in T;. The matrix
multiply subroutine is general enough to aliow the multiplication of one matrix by the transpose
of another matrix. This is accomplished by adjusting the distance between the rows of the second
matrix to equal the distance between the columns, and the distance between the columns is set to
equal the distance between the rows. The temporary matrix T; now has the results of the com-
putation &(t;, ti_1)GQGT. The next portion of the code adds @(t,-,t;_l)GQGT to its transpose.
The matrix addition subroutine is also general enough to allow one matrix to be added to the
transpose of another matrix. This is accomplished in the same fashion as the matrix multiplication
subroutine. After performing the matrix addition, the microcode multiplies the matrix sum by

At/2 to complete the computation of Qq(ti—1).

The number of clock cycles required to compute Qq(¢;_1) is 4n%s + 26ns + 2ns? + 19n° +
10(n + s) + 42. The number of floating point operations performed is 4n?s + 2ns® — 2ns -- n? + 12.
For dimension sizes of n = 64 and s = 32, 787434 clock cycles. and 589836 floating point operations
are required for the computation. The hardware utilization factor for this portion of the microcode

is 0.8323.

6.3.3.4 Qua(ti—y1) Factorization: The propagation routine after computing Qgu(t,_1).
moves on to factorize Q;(t,_;) into the upper triangular matrix Gy(t,), and the diagonal matrix

Qq(t:). The pseudocode algorithm for the factorization of Qq(2,—1) is given below.

fori=1tondo
for j=1tondo

if i = j then
Gu(t:)[is] =1
else
Ga(ti)[f][s] = 0
end if
Qu(t)li)j} =0
end for
end for

6-21

for j = n downto 1 do

Q)T = Qulti U]
if (Qu(t;) =0 then

A4 =0
else

A = 1/Qqut)]]
end if

fork=1toj—1do
BB = Q (t,.ti_1)
Gy(t;)= AAx BB
forit = 1tok do

Qulti, tim))i][k] = Qu(ti ti)[i][k] = (BB x Gu(t,)[z){5])

end for

end for

end for

Qd(tz)[ll[l] = Qd(tx—l)[1][1]

The microcode begins the factorization of Qu(t,_1) by initializing G4(¢t,) to a n-by-n identity
matrix. and initializing Qq(t;) to zero. After initializing the matrices, the microcode enters a loop
that transfers the j* diagonal element of Qg(t;_;) to the jt* diagonal element position of Q4(¢,).
The temporary variable, A.4. is then assigned either 0 or the inverse of the j* diagonal clement
of Qa(ti=y). The first nested loop traverses the j** column of Qg(t;_;) assigning the k* element
to the temporary variable BB. The k'* element of the j** column of the matrix Gy(t,) is then
assigned the product A4 x BB. The second nested loop then modifies the elements of Qq(¢,_;).
The result is the factored upper triangular matrix. G4(¢;), and the diagonal matrix, Qu(#,), such

that Qa(ti-1) = Ga(t:) Qa(t) GI (L)

The number of clock cycles required to perform the factorization of Qq(t;_;) is (4n> + 18n? +
110n — 66)/3. and the number of floating point operations performed are (2n3 +3n2 4+ n —6)/6. For
a 64-state Kalman Filter, it will require 376470 clock cycles, and 89439 floating point operations
yielding a 0.2376 hardware utilization factor {ur this portion of the microcode. It is interesting to
note the significant drop in efficiency. This can be attributed to the algorithm which, although it

does deal with matrices, does ..ot lend itself well to the architecture of the FPASP.

6.3.3.5 UD Propagation: The final portion of microcode in the Propagation routine

performs the UD propagation. Except for the updating of the state values, all the microcode prior

6-22

to this has been computing intermediate matrix values needed for the propagation of the Uft ")

and D(¢7) matrices. The following pseudocode highlights the UD propagation routine.

fori=1tondo
forj =1ton+sdo
Y0l = 0
end for
end for
fori=1tondo
fory=1tondo
fork=1tondo

Y] = Y0+ (St o0k x U)kG))

end for
end for
fori=1tondo
Y(illl + a] = Gu(t (i1
end for
end for
for: =0to 2n do
D(t_)i =0
end for
fori=1tondo
D(t)li] = DG)i
end for
fori =1tondo
D)) = Quta) (il
end for
for k = n downto 1 do
forj=1to2ndo
c[5] = D(t;i_1)lJ] x Y[k}{]
end for
D(t7)k]=0
for j =1to2n do

D(t71)[k] = Dt)R] + (Y([k]UT x e[5])

and for
for j = 1 to 2n do
d[j] = c[51/D(t;,)[]
end for
fori=1tok—-1do
U5k = 0
for j=1to2ndo

6-23

UL)R] = UG DGR + Y] x d])
end for
for j =1to2n do
Yl = YUUT - (Ut K] x YKIG))
end for
end for
end for

The final section of microcode in the propagation routine begins by initializing Y(t;_,) to
zero. After initializing the matrix tc zero. the microcode performs the matrix multiplication of
&(t;.t;i-1) and U(t}) placing the resultant matrix directly in rows 1 through n, and columns 1
through » of Y(t;_,) which is a n-by-2n matrix. This is accomplished by adjusting the distance
between the rows of the resultant matrix in the subroutine Matrix Multiplication. The microcode
then copies G(¢;) into rows 1 through n, and columns n + 1 through 2n of Y(¢;_,). Once the
microcode has completed generating Y(t_,). the vector f)(t;l) is initialized to zero, and D(t])
is copied into the first n element positions. Next, the diagonal matrix, Q(¢;), which is stored as an
n length vector, is copied into the remaining n element positions of lj(t;_l). The microcode then
enters a loop which iterates from & = n downto 1. The temporary vector, ¢, is calculated for each
iteration which is a point—by—point vector multiply of D(¢7,,) and the k** row of Y(t;_,). Next
the dot product of the k** row of Y(¢7_,) and c form the new kt* element of D(t}). The temporary
vector d is generated next which is formed by multiplying ¢ by the inverse of the k** element of
D(tf). The microcode then enters an inner loop where the k** column of U(t}) from rows 1 to k
are propagated by performing the dot products of the i** rows of Y(t7_,) and d. Finally, Y(¢_,)

is modified in preparation for the next iteration of the outer loop.

The number of clock cycles required by the microcode to perform the UD propagation is
1373 4+ 29n? 4 63n ~ 6, and the number of floating point operations required are 6n® + 3n2 + 12n.
For a 64—state Kalman Filter where n = 64, this equates to 3,530, ..2 clock cycles, and 1, 585,920

floating point operations which gives a hardware utilization factor of 0.4492.

6.3.3.6 Propagation Routine Summary: The Kalman Filter propagation microcode

routine was designed and developed incrementally in conjunction with a higher—order language

6-24

[r FPASP Propagation Performance H

n m § p b ¢ Cycles | FLOPS | AT

states | measurements | noises | controls | terms || z 10° z 10° | msecs
64 32 32 16 I 4.712 2.343 188.4
64 32 32 16 2 5.314 2.903 212.5
40 20 20 0 1 1.196 0.576 47.8
10 20 20 0 2 1.354 0.642 54.2
20 6 6 0 1 0.155 0.065 6.2
20 6 6 0 2 0.178 0.073 7.1
16 1 6 0 1 0.086 0.035 | 3.4
16 1 6 0 2 0.099 0.040 | 3.9

Table 6.1. Kalman Filter Propagation Performance

model of the same routine. In this manner, it was possible to test the results of each subportion
of the microcode against another model. Final testing though required using the propagation
microcode routine on actual navigational data provided as a truth model. The method used and

the results obtained in the final testing will be discussed later in the chapter.

Table 6.1 summarizes the performance of the Kalman Filter propagation microcode routine

for varying dimensions.

The first case is a 64—state Kalman Filter with one term in the series expansion of ®(t;,t,_,).
For this case, the propagation microcode demonstrates a floating point hardware utilization factor
of 0.497, indicating that the FPASP operating at 25MHz is performing 12.43 million floating point
operations per second. As the array sizes of the data structures decreases, the number of floating
point operations per second drops off in the last case of a 16—state Kalman Filter with two terms
in the series expansion of ®(¢;,¢;_;). In this case, the propagation microcode uses the floating
point hardware 39.8% of the time, indicating that a 25MHz FPASP is performing only 9.95 million
floating point operations per second. Clearly, the microcode overhead involved in setting up each
of the individual portions of the routine becomes the dominate factor as the sizes of the data

structures is decreased.

Execution of the propagation microcode routine alters the FPASP memory map as depicted

in Figure 6.2. The initial data structures, except for the state vector and the UD factors of the

6-25

state covariance matrix, have been unaltered. The previous time stamp. ¢,_;, now contains the

current time stamp, and ¢, must be updated prior to the next propagation.

#.3.4 Update Routine: The update microcode routine incorporates external measurements
into the filter estimates. The microcode itself is independent of the propagation routine microcode.,
and is called as an independent subroutine. The development of the update routine proceeded as
did the propagation routine, and was derived directly from the calculations presented in section
6.2.4. The update routine needs not compute any intermediate data structures independent of the
routine itself. The following pseudocode program shows the algorithm developed for the up.date

microcode routine.

forl=1tomdo
forl=1tondo
cft]=0
forj=0ton do
i) = fi] + (UT(67) x H (1)
end for
end for
fort =1tondo
v[i] = D(¢7)il cli]
end for ‘
a[0] = R[!]
fork=1tondo
a(k] = afk — 1] + (c{k] x v[k])
D(i})[k] = D&)[k] x (afk 1]/alk))
d[k] = v{[k]
if k)1 then
plk] = ~c[k]/alk - 1]
forj=1tok—-1uo
temp = U(t;)i][k]
Uk = UGk + (dl] x plk))
d[j] = dlj] + (temp x v[K])
end for
end if
end for
forj =1tondo
K(t)ls] = d(j}/aln]

end for

6-26

POST PROPAGATION MEMORY MAP

0 - 31 Reserved

P | S
Xx | N
M | last pos

35 - 40 unused

t

£y

43 - 49 reserved

(nxs)

{(sxs)

(nxn)

(nxp)

(mxn)

(mx1)

(px1)

Ol o L LR] Tl [

(mx1)

x(tin) (nx1)

Uti{) (nxn)

D7) (nx1)

O(titic) (nxn)

x(tin) (nx1)

Q4ti-1) (nxn)

G(;) (nx2n)
Qt;) (2nx1)
c (2nx1)
d (2nx1)
'Y
.

'Y

= bottom of memory
- 32

33

- 34

- 41
- 42

<«— 50 beginning of
matrices

<— LR17
“+—UR!6

P
LR7 Upon completion

“*— LR6 of propagation,
the beginning
addresses are

<— URS in indicated
registers.

- Lrs | %

<— UR9

«— LR9

Total Propagation Memory Requirements
62N2+ (S+M +P+ 9N + S2+ 2M + P + 50 words

Figure 6.2. Post Propagation Memory Map

6-27

temp =0
forj=0tondo
temp = temp + (H(t:)[1][5] x %(£7)[3])
temp = z[l]— temp
x(t9)5] = x(¢7)i] + (K(t:)[5] x temp)
end for
end for

The update microcode routine begins by entering a loop that iterates for each measuremeat.
The temporary vector c is calculated by multiplying UT(¢7) by the Ith row vector of HT(¢;). Next,
the temporary v vector is calculated by performing a point—by—point vector multiplication of
D(¢7) and c. The next step is to assign the /** measurement noise covariance value from R to the
0t* element of the temporary vector a which has a vector length of n + 1. The first nested loop is
entered where the k** element of a is calculated, the k** element of D(t}) is calculated, and the
kth element of the temporary vector d is assigned the k* element value from v. If this is the first
iteration, the rest of the loop is skipped, else for k = 2 to n, the temporary vector p is calculated
and a second nested loop is entered. In the second nested loop, U(t}) is updated, and the j**
element of d is modified. After completing both nested loops, the update routine calculates the

filter gain, K(¢;), and the state values are updated.

The total number of clock cycles required for the FPASP to perform the update routine are
m(2n? +121n+ (13n(n - 1)/2) +47) 4+ 13. The total number of floating point operations performed
are counted to be m(4n? + 17n + 21). For a 64—state Kalman Filter with 32 measurements, it will
require 1,219,181 clock cycles, and a total of 559,776 floating point operations. This yields a 0.459

hardware utilization factor for the update routine.

6.3.4.1 Update Summary: The same method that was used for developing the Kalman
Filter propagation routine was used to develop the Kalman Filter update routine. The update
routine was developed in conjunction with a higher—order language implementation of the same
routine, which allowed incremental testing of the routine’s subcomponents. Use of the update
routine is in conjunction with the use of the propagation routine. Prior to a call to the update

routine, the propagation routine must be called first to propagate to the Filter estimates to the

6-28

[r FPASP Propagation/Update Performance ﬂ
n m s p X Cycles | FLOPS | AT
states | measurements | noises | controls | terms || z 10° | 2 10° | msecs
64 32 32 16 1 6.062 2.902 242.5
64 32 32 16 2 6.664 3.169 266.6
40 20 20 0 1 1.561 0.718 62.4
40 20 20 0 2 1.719 0.784 68.8
20 6 6 0 1 0.189 0.076 7.6 B
20 6 6 0 2 0.213 0.085 8.5
16 1 6 0 1 0.090 0.036 3.6
16 1 6 0 2 0.103 0.041 4.1

Table 6.2. Kalman Filter Propagation/Update Performance

current time. Final testing of the update routine requires that the navigational data provided by
a truth model be propagated first. Discussion of the final testing of the Kalman Filter microcode

program is deferred until later in the chapter.

The expected performance of the Kalman Filter microcode program, which includes the per-
formance of the update routine, is given in the following Table. The number of clock cycles and
floating point operations, as well as the expected times reflect the operations of both the propaga-

tion routine and the update routine.

The first entry in the above Table indicates that four complete propagations and updates of
a 64—state Kalman Filter with 32 measurements and one term in the s~ries expansion of &(¢;,%;_1)
can be performed every second. The overall floating point hardware utilization factor is 0.4973
indicating that the FPASP is performing on the average 12.43 million floating point operations
per second. On the other hand, 244 propagations and updates can be performed with a 16—state
Kalman Filter with one measurement and one term in the series expansion of ®(t;,t,_;). In this
latter case, the floating point hardware efficiency has dropped to 40.11% aad the average number
of floating point operations per second has declined to 10.03 million. As it was indicated before,
the microcode overhead for initializing and setting up the individual computations has become the

dominate factor with a smaller Kalman Filter.

The execution of the update routine has altered the FPASP memory map as shown below

6-29

POST PROPAGATION/UPDATE MEMORY MAP

-pr—
0 - 31 Reserved bottom of memory

P | s -— 32

X | N -— 33

M | last pos -— 34
35 - 40 unused

t; -—

Liog - 42

43 - 49 reserved <— 50 beginning of
(nxs) matrices
(sxs)
(nxn)
(nxp)
(mxn)
(mx1)
(px1)
(mx1)
Xx(tis1) (nx1)
Uti{) (nxn) ~— UR1S
D({) (nx1)
<— LR7

®(titi)) (nxn) Upon completion
K(t) (nx 1) “— LR6 of update.

i <— UR9 the beginning

Hie|n ID|FimO|Q

“—LR9
=<— LR17

¢, (nx1) addresses are
<— [JRS in indicated
P (nx1) - IRS registers.
v (nx1) - UR10
d (nx1) <— LR10
a (nt1x 1)
.
°
.

Total Update Memory Requirements
32N2+(S+M+P+8)N+Sz+2M+P+51 words

Figure 6.3. Post Propagation/Update Memory Map

6-30

in Figure 6.3. The initial data structures initialized by the host system have remained unaltered
except for those that were updated. The host system needs update only individual array elements

as necessary before the next propagation/update is performed.

6.4 Kalman Filter Microcode Program Testing

The previous sections went to some length to describe the algorithms developed to compute
the calculations of *%c Kalman Filter. These algorithms were then implemented using FPASP

microcode and the C programming language.

6.4.1 Kalman Filter Microcode Program Verification: As each phase of the microcode im-
plementation was completed, verification of its operation and results were made against the output
of the equivalent C routine. The verification of the C implementation was done against handed com-
puted examples on very small models. The data structures were initialized using random data for
the most part. Matrices that required being symmetric, positive semidefinite, were so constructed
using random data values. The intent was to verify that the microcode routines manipulated the
data correctly. To perform the validation of the Kalman Filter microcode program, it was necessary

to obtain the data from an actual navigational model.

6.4.2 Kalman Filter Microcode Program Validation: The navigational model used to vali-
date the Kalman Filter microcode program was a 4—state Kalman Filter used to track the location
of a satellite in orbit around the earth (May82). The system dynamics matrix, F, was given as a

function of the state vector %.

0 1 G (4]
2 2
i+ 5 0 0 2,24
F(ti_l) = 1
0 0 0 1
21‘ =2z4 =2z;
L z:l::: E3Y 0 z J
x(t7) = [1 00 1.1547]
6-31

The initial values of the remaining data structures were:

1000
H(t;) =
001 0
i]
10E—4 0
R =
0 1.0E — 4
[10E—6 o
Q(t;) =
0 1.0E - 6
[0 0]
10
G(t;) =
0 0
[0 1 |
025 0 o0 o0)
_ 0 025 0 0
Plin) = 0 0 025 0
| 0 0o 0 025

The P(¢,) matrix is the state covariance matrix from which U(t7, ;) and D(t;,) are factorized.

The measurement matrix, z, was initialized with the initial measurements for the model.

z(t7) = [1.000017 1.1546876E—2]

These measurements are externally provided *o the Filter, and must be updated by the host system

prior to each update.

The validation of the Kalman Filter microcode program required that the logic simulator be
modified to operate as a subroutine in order to perform successive propagations and updates. Nor-
mally, the logic simulator performs a single execution of a microcode program and then terminates.
A higher—level validation routine was developed which first initialized the data structures to the

values given above, then computed F(t;_1) based on the current state values %(¢}), and then fac-

6-32

torized P(t7,,) into U(t;, ;) and D(¢7,). The FPASP validation routine then called the FPASP
logic simulator, which performed the time propagation first followed by a measurement update.
The estimates of interest were the updated state values, i(t?’), which estimated the position of the
satellite in polar coordinates, and the state covariance matrix, P(t}), which provides the variance
of the estimates. After each propagation/update, the FPASP validation routine would update z,

and reperform the propagation/update.

The truth model for the FPASP Kalman Filter was developed by Capt F. Britt Snodgrass.
Capt Snodgrass developed the truth model program using the above initial values, and executed
the program using MSOFE (Multimode Simulation for Optimal Filter Evaluation) for one second
of simulation time with At set to 0.01 seconds. The same data was then run using the modified
FPASP lo_ic simulator, and the results compared. Figure 6.4 gives the percent difference

’ii(tf)hlsopz - ii(tf)FPASP‘

Percent Difference = — x 100%
%i(t")MsoFE

between the elements of the state vector of the truth model and the elements of the state vector of

the FPASP model under evaluation.

Figure 6.4 shows that the difference between the elements of the state value vector of the
MSOFE model, and the elements of the state value vector of the FPASP model is less than one

percent.

The diagonal elements of the P(¢t}) matrix were also compared. Figure 6.5 gives the percent
difference of the diagonal elements, and shows that the diagonal elements of the covariance matrix

differ by less than one percent.

The results of the validation run show that the Kalman Filter microcode program results are
tracking the results of the truth model to within one percent after one second of simulation time.
The differences experienced can be explained by noting that MSOFE propagates the state value
estimates using Kutta Merson integration, whereas the Kalman Filter microcode routine propagates
the state value estimates using an approximated state transition matrix. A longer run might reveal
that the results are in fact diverging from one another, or that they are reaching some steady state

error. In either case, the results after one second are a good match, and the conclusion can be

6-33

Percent Difference (X}

State Values Comparison

Percent Difference

1o
100
0.0
080
0.70
060
053
040 -
0.30
020 -

Qo -

0.00 -

Figure 6.4. State Values Comparison

6-34

Percent Difference (%)

Covariance Matrix Comparison
Percent Difference of Diagonal Elements

080

0.70 i

o P + P2 o P33 a P44

Figure 6.5. Covariance Matrix Comparison

6-35

made that the Kalman Filter microcode program does in fact perform the Kalman Filter algorithm

hence validating the program (Snox9).

Comparing the results between the Kalman Filter microcode program and the validation
model reveals that the developed microcode program is closely tracking the validation model. The
conclusion that can be drawn is that the microcode program has accurately impleniented the

Kalman Filter algorithm, and hence the Kalman Filter microcode program is validated.

6-36

VI, Conclusions and Recommendations

7.1 Conelusions

This th sis has -escribed the development of the Kalman Filter microcode which will be
programmed into the FPASP. the development and use of a RTL simulator written in the C
programming language. and the development of a register transfer level VHDL model of the FPASP.
The development ol the RIL simulator was deemed necessary when it was demonstrated that vsing
the register transfer level VHDL model. VHDL simulator, for microcode development would require

very long simulation times.

The development of the Kalman Filter microcode demonstrates more than the FPASP’s ca-
pability of implementing a complex algorithm. It also demonstrates the versatility of the FPASP
highly parallel micro—instruction set. The Kalman Filter application required 482 lines of mi-
crocode which includes all subroutines. This leaves 302 lines of microcode available out of the
total 784 (Koc88). Many of the operations performed in the Kalman Filter algorithm are matrix
algebra computations. The development of the microcede for these operations was simplified by
the optimized hardware design of the FPASP. The remaining operations performed in the Kaiman
Filter algorithm can be best characterized as irregular. The most predominant irregular feature are
triple nested loops that scan through one or more matrix data structures performing operations
on each element within the matrices. For these operations, the best method found for developing
the microcode was to lay out the basic operations required (multiplication, addition, subtraction,
etc.) in a sequential fashion, and then more or less backfill using unused micro—fields to initialize
registers and perform memory I/O. Although .his may not be the most optimal approach, the net
result was a significant decrease in projected execution times as compared to the execution times

derived in the EE588 Kalman Filte. class project.

Tablefeftbl:Microcode Performance Comparisons compares the projected execution times of
the Kalman Filter microcode developed in this research against that developed in the EE588 class
project. The Table shows that the execution times for a 64—state Kalman Filter with one term in

the series expansion of ®(t,,t;_1) decreased by approximately 51%.

Again considering the first case in Table 7.1, an optimal execution time would be the total

number of floating point operations required by the Kalman Filter algorithm. From Table 6.2, the

7-1

Microcode Performance Comparisons H

il N M S P X EE588 | Thesis | Percent
states | measurements | noises | controls | terms || Times | Times | Decrease
64 32 32 16 1 502 242.5 51
61 32 32 16 2 528 266.6 50
40 20 20 0 1 125 62.4 50
| 40 20 20 0 2 131 68.8 47
20 6 6 0 1 15 7.6 49
20 6 6 0 2 16 8.5 47
16 1 6 0 1 6.9 3.6 43
16 1 6 0 2 7.4 4.1 46

Table 7.1. Microcode Performance Comparisons (Times in msecs)

total number of floating point operations required for a 64—state Kalman Filter with one term in
the series expansion of ®(t,,t;_y) is 2.902 x 10% which, for a 25 MHz clock, yields an execution time
of 116 msecs. The microcode developed as part of the research requires 242.5 msecs implying that

only 52% of the time is spent performing ancillary operations.

Testing the Kalman Filter microcode was made possible with the development of the RTL
simula.or written in C. The fact that the RTL simulator is written in C allows the simulator to be
ported to many different computers. The entire Kalman Filter microcode program was developed
on a personal PC while the major simulation runs were performed on an Elxsi 6400. Using the
Elxsi 6400, one nanosecond of simulation time requires 25.5 microseconds of real time meaning a
complete simulation of a 64—-state Kalman Filter requires no more than 100 minutes. Other benefits
reaiized from developing the RTL simulator with C are the abilities to place software hooks in the
simulator to capture data structures during the simulation. The Kalman Filter algorithm performs
some very complex manipulations on its data structures, manipulations that couldn’t readily be

followed by reviewing the simulator generated state files.

Developing the FPASP register transfer level simulator with VHDL has demonstrated the
versatility of this hardware design language. The VHDL design entities developed to model the
FPASP components emulate the operating characteristics of the hardware much more accurately
than subroutines written in a programming language such as C. Ensuring that the design entities

map accurately to hardware they are modeling will ease the process of updating the VHDL simulator

7-2

_

should the FPASP design be modified. Writing the code for the VHDL simulator was considerably
more difficult than writing the code for the RTL simulator. The most difficult part of the code
development was learning the VHDL constructs of signal assignment and signal resolution, and
synchronizing the execution of the individual design entities. The VHDL simulator contains 14

design entities and six packages requiring 5300 lines of code, which includes all commmeuts and

module headers (Koc88) . This compares to the 2000 lines of code, again including all comments
and module headers, to write the C language RTL simulator. Realizing that VHDL is highly
structured language and C is not, the difference is easy to understand. The only disappointing
aspect of the VHDL simulator is its slow execution times. Running the VHDL simulator on a VAX
8800, one nanosecond of simulation time requires 125 milliseconds of real time. Simulating a simple
4—state Kalman Filter requires approximately 18 hours to perform 5000 simulation cycles. This

compares to five minutes using the RTL simulator on an Elxsi 6400.

The VHDL design entities developed to model the FPASP components are rather complex,
and defied any attempts to provide accurate written descriptions. In response, the Entity Structure
Diagram was developed as a tool to graphically depict the structure of a VHDL design entity.
Included in the scope of this thesis, was the requirement to accurately model the FPASP. Even
though the developer of the simulator may feel the model is accurate, he has the responsibility to
convince others. The Entity Structure Diagram has made this task easier by providing the means

to demonstrate the mapping between the software and the hardware that is easily understood.

7.2 Recommendations

A major portion of the time devoted to this thesis went into the development of the Kalman
Filter microcode. Approximately two months were required to develop, debug, optimize, and test
the code. Starting with only minimal exposure to the FPASP micro—instruction set, it could be
argued that a majority of the time spent was on the front end of a learning curve. In retrospect,
after becoming intimately familiar with the FPASP micro—instruction set, if the Kalman Filter
microcode were to be rewritten, it would still require a considerable amount of time. The same
Kalman Filter algorithm was implemented with C as part of the microcode development and
required only two evenings. An automated tool, for translating a higher—order language description

of an algorithm into a format compatible with the GMAT assembler, would drastically reduce the

7-3

time required to develop FPASP microcode.

The software tools developed as part of this research effort, in particular the RTL simulator,
provide an excellent basis for follow—on class projects. The RTL simulator is rather primitive,
vet it should be easy to integrate into a full microcode application environment. Even without a
formal development environment, the RTL simulator can provide FE&R8 students the opportunity
to program and execute microcode routines. The microcode routines could then be collected into

a library of routines for possible programming into the FPASP.

A considerable interest is being placed in software development tools that translate graphical
data flow charts (flow charts, structure charts, etc.) to some form of higher—order language that can
be compiled and executed. An interesting software engineering project would be a feasibility study
into translating design entities developed using the Entity Structure Diagram directly to VHDL.
The Entity Structure Diagram in its current form lacks the detail to express all the constructs of

a design entity. Yet it does demonstrate that the capability is there.

One of the benefits of using VHDL to model a VLSI architecture is that VHDL allows a rich
combination abstraction levels to exist concurrently in the same simulator. The VHDL simulator
developed in this research effort models the FPASP at the register level using subroutines to
emulate component functions. As the macro cell designs of the FPASP components are completed
and verified, the design entity for each component should be updated and reinstantiated into the

simulator.

7-4

Appendix A. FPASP Microcode Fields Definitions

F.P.ASP Architecture Specification
Microword Format
rev 3.0: 14 December 1988

Upper ROM
64 Bits
A BUS| B BUS | C BUS{ALU | SHIFT | FPMULT| FPADD| INC | AB PTR| MBR | MAR! E BUY E BUS | MEM| MEM] MEM] FUNCT
SEL SEL SEL | SEL | CTRL CTRL CTRL CTRLJ CTAL |CTRL | CTRY TIE CTRL] CS| WE| OE| ROM
(5) (5) (5) 4) 4) 3) (3) (3) 3) (2) (2) (1) 2 W] M} M (3)
C BUS|{ UT INS| MUX BRANCH | MACRO
TIE CTRL { SELECT| CTRL SEL
(1) (4) (6) (2) (3)
Lower ROM
64 Bits
A BUS|{BBUS|CBUS} ALU | SHIFT | BARREL| BARREL} INC | AB PTR| MBR | MAR| E BUS| A BUS{ B BUS | MEM | MEM
SEL SEL SEL. { SEL { CTRL | SET-UP|SHIFT | CTRU CTRL JCTAL | CTRY SEL TIE TIE CS WE
(5) (5) (5) (4) (4) (2) | (5) (3) (3) 2) (2 (2)) (1) (1) (1)
MEM)] DONE| NEXT A
QOE | 8T UTERAI
(1] (1) (18)
A-1

A.1 Upper ROM Fields

bits 0-4

00000:
00001:
00010:

11001:
11010:
11011:
11100:
11101:
11110:
11111:

bits 5-9

00000:
00001:
00010:

11001:
11010:
11011:
11100:
11101:
11110:
11111:

bits 10-14

00000:
00001:
00010:

11001:
11010:
11011:
11100:

Revision 3.0, 14 December 1988
Upper A Bus Select

NOP1 (no drive - DEFAULT)
AU=R1 (upper A bus = upper R1)
AU=R2

AU=R25

AU=IN1 (upper A bus
AU=IN2

AU=IN3

AU=APT (upper A bus = A pointer)
AU=BP1

AU=MBR (upper A bus = upper MBR)

upper INC1)

Upper B Bus Select

NOP2
BU=R1
BU=R2

BU=R25

BU=IN1

BU=IN2

BU=IN3

BU=FP* (upper B bus = result FP Multiplier, MSBs)
BU=FP+ (upper B bus = result FP Adder, MSBs)
BU=MBR

1Ipper C Bus Select

NOP3
R1=CU (upper R1 loads from upper C bus)
R2=CU

R25=CU
IN1=CU (upper INC1 loads from upper C bus)
IN2=CU
IN3=CU

A-2

11101:
11110:
11111

bits 15-18

0000:
0000:
0C01:
0010:
0011:
0100:
0101:
0110:
0111:
1000:
1001:
1010:
1011:
1100:
1101:
1110:
1111:

bits 19-22

0000:
0001:
0010:
0011:
0100:
0101:
0110:
0111:
1000:
1001:
1010:
1011:
1100:
1101:
1110:
1111:

bits 23-25

APT=CU (A pointer loads from upper C bus)
BPT=CU
MBR=CU (upper MR loads from upper C bus)

Upper ALU Select

NOP4
MOVUN (SHIFTER_INPUT=A, flags unaffected)
ORU (SHIFTER_INPUT=A or B)

ANDU (SHIFTER_INPUT=A and B)

XORU (SHIFTERINPUT=A xor B)

MOVU (SHIFTER_INPUT=A, affects flags)
NANDU (SHIFTERINTPUT=A nand B)

NORU (SHIFTER_INPUT=A nor B)

NOTU (SHIFTERINPUT=A")

INCU (SHIFTERINPUT=A + 1)

SETU (Set Carry Flip Flop)

ADCU (SHIFTER_INPUT=A + B + cy flip-flop)
ADDU (SHIFTERINPUT=A + B)

NEGAU (SHIFTERINTPUT= -A)

SUBU (SHIFTER.INPUT =A - B)

SWBU (SHIFTERINPUT =A — B — cy flip-flop)
DECU (SHIFTERINPUT =A - 1)

Upper Shifter Control (INPUTS DIRECTLY FROM ALU)

NOP5 (Shifter does not drive C bus)
GNDCU (C = 0, shift flass unaffected)

PASSU (C = SHIFTERINPUT, shift flags unaffected)
SLOTU (SHL with SH.OUT into LSB)
SLMSU (circulate left with MSB into LSB)
SLCYU (SHL with CY out of ALU into LSB)
SLOU (SHL with 0 into LSB)

SL1U (SHL with 1 into LSB)

SRLSU (circulate right with LSB into MSB)
SRCFU (SHR with carry flip-flop into MSB)
SRSU (SHR with SIGN FF into MSB)
SROTU (SHR with SH.OUT FF into MSB)
SRSEU (SHR with sign extension)

SRCYU (SHR with CY out of ALU into MSB)
SROU (SHR with 0 into MSB)

SR1U (SHR with 1 into MSB)

Floating Point Multiplier Control

A-3

000: NOP6

000: FP* (do floating point multiply - DEFAULT)

001: FP*D (drive results onto C bus, latch flags)

010: FP*L (load A, B bus inputs)

011: FP*PD (load A,B bus inputs, drive C bus, latch flags)

100: INT* (do integer multiply, must be selected during INT*)
101: INT*D (drive product onto C bus)

110: INT*L (load 32 bit integers from A & B busses)

111: INT*LD

bits 26-28 Floating Point Adder Control
000: NOP7
000: FP+ (do floating point add - DEFAULT)

001: FP+D (drive results onto C bus, latch flags)
010: FP+L (load A, B bus inputs)
011: FP+LD (load A, B inputs, drive C bus, latch flags)

100: FP- (do floating point subtaction)
101: FP-D (drive C bus while doing subtract)
110: FP-L (load new inputs while doing subtract)

111: FP-LD (load and drive while doing subtract)
bits 29-31 Upper Incrementable Registers Control

000: NOPS (no increment - DEFAULT)
001: UIN14 (increment upper INC1)
010: UIN2+ (increment upper INC2)
100: UIN3+ (increment upper INC3)

bits 32-34 A, B Pointer Controls

000: NOP9 (no change - DEFAULT)

001: AIN_L (load A increment size)

010: BIN_L (load B increment size)

011: ABIN.L (load A, B increment sizes)

100: APT+ (increment A pointer)

101: A+4_AL (increment A pointer, load A increment)
116: B+.BL (increment B pointer, load B increment)
111: BPT+ (increment B pointer)

bits 35-36 Upper Memory Buffer Registers Control
00: NOP10 (no action - DEFAULT)

01: R1=DU (load upper R1 from upper D bus)
10: R2=DU (load upper R2 from upper D bus)

A-4

11: MB=DU (load upper MBR from upper D bus)
bits 37-33 Upper Memory Address Register Control

00: NOP37 (no action - DEFAULT)
01: MAR=CU (drive upper addr bus and load from C bus)
10: MAR=EU (drive upper addr bus and load from E bus)
11: MARU+ (increment upper MAR)

bit 39 E Bus Tie

(no drive - DEFAULT)
1: (tie upper and lower E busses together)

bits 40-41 Upper E Bus Select

00: NOP12 (no drive -DEFAULT)

01: E=APT (drive A pointer onto upper E bus)

10: E=BPT (drive B poirt-r onto upper E bus)

11: UADRZ (Upper address and memory control pads to hiZ)

bit 42 Upper Memory Chip Select Bar

: NOP13 (active low)
1: UCSH

bit 43 Upper Memory Write Enable Bar

: WEBU (active low)
1 NOP14 (data pads to hiZ, input only - DEFAULT)

bit 44 Upper Memory Chip Output Enable Bar

: NOP15 (active low, output enabled - DEFAULT)
1: UOE_H

bits 45-47 Function ROM Select

000: NOP16 (ROM does not drive C bus - DEFAULT)
001: SQR (Square Root)

010: RCP (Reciprocal)

011: user defined (LPROM)

100: user defined (LPROM)

101: user defined (LPROM)

110: user defined (LPROM)

A-5

111:
bit 48

0:
CTIE

bits 49-52

0000:
0001:
0010:
0011:
0100:
0101:
0110:
0111:
1000:
1001:
1010:
1011:
1100:
1101:
1110:
1111:

bits 53-58

000000:
000001:
000010:
. 000011:
000100:
000101:
000110:
000111:
001000:
001001:
001010:
001011:
001100:
001101:
001110:
001111:

010000

user defined (LPROM)
C Bus Tie

NOP17
(tie both upper and lower C busses together)

Literal Inserter Control

NOP18 (Shifter does not drive C bus - DEFAULT)
SAV1 (flags setl to upper MSBs, LSBs no change)
SAV2 (flags set2 to upper MSBs, LSBs zeroed)
SAV3 (flags set3 to upper LSBs, MSBs no change)
ILZL

IMNL 1st character: Insert literal

IMZL

ILNL 2nd character: LSBs or MSBs get literal
ILZU

IMNU 3rd character: Zero other half or no change

IMZU

ILNU 4th character: UPPER/LOWER/BOTH busses get literal
ILZB

IMNB The mnemonic ILZL means Insert the

IMZB literal on the LSBs and Zero out the MSBs

ILNB of the lower A bus only.

Conditional Multiplexer Select

FAL (unconditionally false - DEFAULT)
101 (I/O interrupt level 1)

102 (I/0 interrupt level 2)

MZ (multiplier zero)

MOVF (mult overflow/int result more than 32 bits)

MUN (multiplier inderflow)

MNAN (multiplier NaN - Not a Number)

MDEN (multiplier denormaliztion trap)

AZ (adder zero)

AOVF (adder overflow)

ANAN (adder NaN - Not a Number)

ADIF (inputs to adder differ by more than 25%)

TRPS (MOVF + MNAN + AOVF + ANAN + UALUO = 1)
UIN1Z (upper INC1 = 0)

UIN2Z (upper INC2 = 0)
UIN3Z (upper INC3 = 0)
:USO (upper shifters shifted out bit = 0)
A-6

010001:
010019:
010011:
010100:
010101:
010110:
010111:
011000:
011001:
011010:
011011:
011100:
011101:
011110:
011111:
100000:
100001:
100010:
100011:
100100:
100101:
100110:
100111:
101000:
101001:
101010:
101011:
101100:
101101:
101110:
101111:
110000:
110001:
110010:
:LIN2N
110100:
110101:
110110:
110111:
111000:
111001:
111010:
111011:
111100:
111101:

110011

LIN1Z
LIN2Z
LIN3Z
UALUZ
UALUN
UALUO
UALUC
unused
unused
unused
UEVN
UR1.0
UR1.1
UR1.2
UR1.3
TRU
NIO1
NIO2
NM?Z
NMOVF
NMUN
NMNAN
NMDEN
NAZ
NAOVF
NANAN
NADIF
NTRPS
UIN1IN
UIN2N
UIN3N
LSO
LININ
LIN2N

LALUZ
LALUN
LALUO
LALUC
unused
unused
unused
LEVN
UR1.28
UR1.29

(lower INC1 = 0)
(lower INC2 = 0)
(lower INC3 = 0)
(upper ALU zero)
(upper ALU negative)
(upper ALU overflow)
(upper ALU carry)

(integer on upper C bus is even - LSB = 0)
(UR1 bit 0 = 1)

(UR1 bit 1 = 1)

(UR1 bit 2 = 1)

(UR1 bit 3 = 1)

(unconditionally true)

(not I/O interrupt level 1)

(not I/O interrupt level 2)

(not multiplier zero)

(not multiplier overflow)

(not multiplier underflow)

(not multiplier NaN)

(not multiplier denormalization trap)

(not adder zero)

(not adder overflow)

(not adder NaN)

(inputs to adder do not differ by more than 254)
(MOVF + MNAN 4 AOVF + ANAN + UALUO = 0)
(upper INC1 not = 0)

(upper INC2 not = 0)

(upper INC3 not = 0)

(lower shifter’s shifted out bit = 0)

(lower IN1 not = 0)

(lower IN2 not = 0)

(lower IN3 not = 0)

(lower ALU zero)

(lower ALU negative)

(lower ALU overflow)

(lower ALU carry)

(integer on lower C bus is even - LSB = 0)
(UR1 bit 28 = 1)
(UR1 bit 29 = 1)

111110: UR1.30 (URI bit 30 = 1)
111111: UR1.31 (UR1 bit 31 = 1)

bits 539-60 Branch Control

00: BR (conditional branch - DEFAULT)

01: RET (conditional return)

10: CALL (conditional call)

il: MAP (uncondotionally use the MAP next address)

bits 61-63 Macrocode Support Mux Selects

000: NOP19 (DEFAULT)

001: RSEL (override register select/bus tie fields)

010: BRSEL (override condition mux select field)

011: SRSEL (override Ebus/Etie ctrls, reg sel, and bus tie fields)
100: ALSEL (override ALU/Shift, reg sel, and bus ties)

101: SHSEL (override Barrel shilt ctrl, reg sel, and bus ties)
110: ISEL (override increment and pointer ctrl fields)

111: unused

A-8

A.2 Lower ROM Fields

bits 0-4 Lower A Bus Select

00000: NOP1 (no drive - DEFAULT)
00001: AL=R1 (lower A bus = lower R1)
00010: AL=R2

11001: AL=R25

11010: AL=IN1 (lower A bus = lower INC1)
11011: AL=IN2

11100: AL=IN3

11101: AL=CPT (lower A bus = C pointer)
11110: AL=DPT

11111: AL=MBR (lower A bus = lower MBR)

bits 5-9 Upper B Bus Select

00000: NOP2
00001: BL=R1
00010: BL=R2

11001: BL=R25

11010: BL=IN1

11011: BL=IN2

11100: BL=IN3

11101: BL=FP* (lower B bus = result FP Multiplier, MSBs)
11110: BL=FP+ (lower B bus = result FP Adder, MSBs)
11111: BL=MBR

bits 10-14 Lower C Bus Select
00000: NOP3
00001: R1=CL (lower R1 loads from lower C bus)

00010: R2=CL

11001: R25=CL

11010: IN1=CL (lower INC1 loads from lower C bus)
11011: IN2=CL

11100: IN3=CL

11101: CPT=CL (C pointer loads from lower C bus)
11110: DPT=CL

11111: MBR=CL (lower MBR loads from lower C bus)

A-9

bits 15-18

0000:
0000:
0001:
0010:
0011:
0100:
0101:
0110:
0111:
1000:
1001:
1010:
1011:
1100:
1101:
1110:
1111:

bits 19-22

0000:
0001:
0010:
0011:
0100:
0101:
0110:
0111:
1000:
1001:
1010:
1011:
1100:
1101:
1110:
1111:

bits 23-24
00:

01:
10:

NOP¢
MOVLN
ORL
ANDL
XORL
MOVL
NANDL
NORL
NOTL
INCL
SETL
ADCL
ADDL
NEGAL
SUBL
SWBL
DECL

NOP5
GNDCL
PASSL
SLOTL
SLMSL
SLCYL
SLOL
SL1L
SRLSL
SRCFL
SRSL
SROTL
SRSEL
SRCYL
SROL
SRIL

SHROM
SHREG
L.ROM

Lower ALU Select

(SHIFTER_INPUT=A, flags unaffected)
(SHIFTER_INPUT=A or B)
(SHIFTERINPUT=A and B)
(SHIFTER_INPUT=A xor B)
(SHIFTER_INPUT=A, affects flags)
{SHIFTERINTPUT=A nand B)
(SHIFTERINPUT=A nor B)
(SHIFTERINPUT=A")
(SHIFTERINPUT=A + 1)

{Set Carry Flip Flop)
(SHIFTERINPUT=A + B + cv flip-flop)
(SHIFTERINPUT=A + B)
(SHIFTERINTPUT= -A)
(SHIFTERINPUT =A - B)
(SHIFTERINPUT =A -~ B — cy flip-flop)
(SHIFTER_INPUT =A - 1)

Lower Shifter Control (INPUTS DIRECTLY FROM ALU)

(Shifter does not drive C bus)

(C = 0, shift flags unaffected)

(C = SHIFTER.INPUT, shift flags unaffected)
(SHL with SH.OUT into LSB)
(circulate left with MSB into LSB)
(SHL with CY out of ALU into LSB)
(SHL with 0 into LSB)

(SHL with 1 into LSB)

(circulate right with LSB into MSB)
(SHR with carry flip-flop into MSB)
(SHR with SIGN FF into MSB)
(SHR with SH.OUT FF into MSB)
(SHR with sign extension)

(SHR with CY out of ALU into MSB)
(SHR with 0 into MSB)

(SHR with 1 into MSB)

Barrel Shifter Set-up
(shift using ROM control input - DEFAULT)

(shift using control register input)
(load Bar ctrl reg, use ROM input to shift)

11 L_.REG (load Bar ctrl reg, use old reg value to shift)
NOTE: If vou just want to load the reg, use L_ROM and NOP25 below.

bits 25-29 Barrel Shifter Control

00000: NOP25 (do not drive C bus - DEFAULT)
00001: LCS1 (1 bic left circular shift)
00010: LCS2 (2 bit left circular shift)

11111: LCS31 (31 bit left circular shift)

bits 20-32 Lower Incrementable Registers Contrel

000: NOP26 (no increment - DEFAULT)
001: LINt1+ {increment lower INC1)
010: LIN2+ (increment lower INC2)
100: LIN3+ (increment lower INC3)

bits 33-35 C, D Pointer Controls

000: NOP27 (no change - DEFAULT)

001: CIN_L (load C increment size)

010: DIN_L (load D increment size)

011: CDIN.L (load C, D increment sizes)

100: CPT+ (increment C pointer)

101: C+.CL (increment C pointer, load C increment)
110: D+.DL (increment D pointer, load D increment)
111: DPT+ (increment D pointer)

bits 36-37 Lower Memory Buffer Registers Control

00: NOP28 (no action - DEFAULT)

01: R1=DL (load lower R1 from lower D bus)
10: R2=DL (load lower R2 from lower D bus)
11: MB=DL (load lower MBR from lower D bus)

bits 38-39 Lower Memory Address Register Control
00: NOP38 (no action - DEFAULT)
0l: MAR=CL (drive lower addr bus and load from C bus)
10: MAR=EL (drive lower addr bus and load from E bus)
11: MARL+ (increment lower MAR)

bits 40-41 Lower E Bus Select

A-11

00: NOP29 (no drive -DEFAULT)

01: E=CPT (drive C pointer onto upper E bus)

10: E=DPT (drive D pointer onto upper E bus)

11: LADRZ (lower address and memory control pads to hiZ)
bit 42 A Bus Tie

0: NOP30

1: ATIE (tie upper and lower A busses together)
bit 43 B Bus Tie

0: NOP31

1: BTIE (tie upper and lower B busses together)
bit 44 Lower Memory Chip Select Bar

0: NOP33 {active low)

1: LCS_H
bit 45 Lower Memory Write Enable Bar

0: WEBL (active low)

1: NOP34 (data pads to hiZ, input only - DEFAULT)
bit 46 Lower Memory Chip Output Enable Bar

0: NOP35 (active low, output enabled - DEFAULT)

I: LOE_H
bit 47 Done Flag

0: NOP36 (no action - DEFAULT)

L: DONE (raise done flag)
bits 48-63 Next Address/Literal Field

(Literals are composed of the bit pattern preceeded by #)

A-12

Appendix B. Entity Structure Diagram Syntaz

The Enitity Structure Diagram was developed to provide some means to graphically depict

a VHDL design entity. A rather generic Entity Structure Diagram is shown below in Figure B.1.

Associated with every design entity is a port list that names the signals imported to or
exported from the entity. Associated with every signal listed within the port list is a mode. That
mode can be either in, out, or inout. The Entity Structure Diagram shows this port, as well as the
signals in the port list, and each signal’s associated mode. In Figure B.1, the port of the design
entity is clearly identified, as are the signals associated with the port. The signal modes are also
clearly identified. Signals X and Z are of mode in, signal Y is of mode out. and signals AA and
BB are of mode inout. What the diagram doesn’t signify is the Type of the signals. The Entity
Structure Diagram is not concerned with the fine details of a design entity, but rather attempts to
provide an abstraction of the overall entity. Details, such as the Types of individual signals, can

be referenced from the source document.

The signals listed in the port are connected internally ‘o a logical network bus. This facilitates
illustrating the logical data flow within the architecture. The logical busses are shown in Figure B.1,
and run vertically up and down the left side of the diagram. Emanating to and from the logical

busses are signal lines. Each signal line has an arrow head to indicate the direction of data flow.

The basic constructs of the design entity are the block statements, and the process statements.
Associated with every block statement is a guard expression, and with every process statement is
a sensitivity list. The Entity Structure Diagram depicts blocks and processes as rectangles with
header bars. Each header bar is labeled as block, or process, and the header bar itself represents
the guard expression, or the sensitivity list respectively. Alternatively, the h‘eader bar could contain
the label name of the block or process that it represents. In complicated architectures, this would
make it easier to identify the structure that it is representing. A signal line terminating in the
header of a block implies the signal is part of the guard expression for that block (refer to the
source document for the guard expression). Likewise, a signal line terminating in the header of a

process implies the process is sensitive to that signal.

Block number omne in Figure B.1 has two signals, X and AA, terminating in its header. The

implication here is that X and AA are used in the guard expression of the block, and the concurrent

B-1

[e e e 2t 4

/ Guard Condition

Block ¥ ¥
e 1
Concurrent
Statements -
b Signal .
Register

Data Movement

_~ Guard Condition

/ Sensitivity List

v Ny

ylyy

Sequential
Statements

Signal Line
/ Sensitivity List

Process V¥
N .03
J. J. A J. J- Sequential
Statements
Logical
Internal Busses
ARCHITECTURE

Figure B.1. Entity Structure Diagram Syntax

B-2

statements within the body of the block are enabled according to specific signal values on X and
AA. Process number three on the other hand, has the output of a locally declared signal register
in its sensitivity list. In this case, the sequential statements within the body of the process will
execute whenever a new value is loaded into the signal register. The exception here is the case
where the TYPE of signal register is some type of an array, and only a slice of the array is actually
listed in the sensitivity list of process number three. Referencing the source document will clear
this question up. The final example in Figure B.1 is the block, process pair number two. This is a
special case (there could be others) where the sensitivity list of the nested process lists the single
implicit signal GUARD. The signals AA and Z terminate in the header of the block statement,
and, depending on the values of AA ard Z, when the condition is True the impicit signal GUARD

is changed. The nested process senses this executes the sequential statements within its body.

The remainder of the diagram contains signal lines emanating and terminating from the
bodies of the blocks and processes. These signal lines represent the logical flow of data that has
been processed by blocks and processes. Process number three for example, is controlled by changes

in the signal register causing some action to be performed on signal X and outputed on signal Y.

The Entity Structure Diagram was designed primarily to provide a higher level abstractional
view of a design entity that could be graphically depicted. The actual instructions contained within
guard expressions, and the architectures of the blocks and processes are left to the source document,

and would only clutter the diagram.

B-3

Bibliography

Arm39. Armstrong, James R., Chip Level Modeling with VHDL, Prentice Hall, Englewood Cliffs,
New Jersey, 19289

Bor83. Boriello, Gaetano and Detjens, Ewald, “High-Level Synthesis: Current Status and Future
Directions,” Proceedings of the IEEE 1988 Design Automation Conference, IEEE Press, March

1988.
Cav84. Cavanaugh, Joseph J. F., Digital Computer Arithmetic, McGraw-Hill, New York, New
York, 1984.

CoeR9. Coelho, David R., The VHDL Handbook, Vantage Analysis Systems, 1989.

Com38. Comtois, John Henry, “Architecture and Design for a Laser Programmable Double Preci-
sion Floating Point Application Specific Processor,” MS Thesis,AFIT/GE/ENG/88-5, School
of Engineering, Air Force Institute of Technology (AU), December 1988.

Fle88. Fleckenstein, Donald C., chairman, “IEEE Standard VHDL Language Reference Manual,”
Institute of Electrical and Electronics Engineers, INC., New York, New York, 1988.

Fuj85. Fujiwara, H., Logic Testing and Design for Testabiliry, MIT Press, Cambridge, Massachus-
settes, 1985.

Gal87. Gallagher, David M., “Rapid Prototyping of Application Specific Processors,” MS The-
sis, AFIT/GE/ENG/87D-19, School of Engineering, Air Force Institute of Technology (AU).
December 1987.

Int85. Inter. etrics, INc. VHDL User’s Manual: Volume I Tutorial. US Air FOrces Contract
F33615-83-C-1003. Bethesda Md., 1 August 1985.

Hau87. Hauser, Robert S., “Design and Implementation of a VLSI Prime Factor Algorithm Pro-
cessor,” MS Thesis, AFIT/GCE/ENG/87D- 5, School of Engineering, Air Force Institute of
Technology (AU), December 1987.

Hus88. Huson, March, Harding, and Asilva, “Kalman Filter Update Project,” EE588 Class Project,
School of Engireering, Air Force Institute of Tech -nlogy (AU), August 1988.

Koc88. Koch, William E., “FPASP Simulator Source Code, Kalman Filter Microcode and Valida-
tion Results,” School of Engineering, Air Force Institute of Technology (AU), October 1989.

Lew89. Lewantowicz, Lt Col Zdzislaw H., Deputy Departmert Head, Department of Electrical and
Computer Engineering, Personal Interviews, Air Force Institute of Technology (AU), 16 June
to 13 October 1989.

Lin88. Linderman, Richard W., editor, “Compendium of Project Reports Submitted for EENG
588: Computer Systems Architecture Summer Quarter 1988," AFIT Technical Report, Air
Force Institue of Technology (AU), October 1988.

Lin88. Linderman, Richard W. and Lewantowicz, Lt Col Zdzislaw H., “Kalman Filter Propagation
and Update,” Student handout, Air Force Institute of Technology Department of Electrical
and Computer Engineering, Wright-Patterson AFB, Ohio, 1988.

BIB-1

May79. Maybeck, Peter S., Stochastic Models, Estimation, and Control, Volume [, Academic Press,
San Diego, California, 1979.

May82. Maybeck, Peter S., Stochastic Models, Fstimation, and Control, Volume II, Academic
Press, San Diego, California, 1982.

Snox9. Snodgrass, F. Britt, Graduate Student, Stochastic Estimation and Control Theory, Personal
Interviews, School of Engineering, Air Force Institute of Technology (AU}, October, 1989.
Scr89. Scriber, Micheal, “ ,» MS The <is, AFIT/CE/ENG/89D, School of Fngineering, Air Force

Institute of Technology (AU), December 1989.
Sum81l. Sumney, Larry W., “Government Interest and Invovlement in Design Automation De-

fvelopment - The VHSIC Perspective,” IEEE Design Automation Conference, pp. 344 - 346,
October 1981.

Tils8. Tillie, John L., “Laser Programmable Read Only Memories,” MS
Thesis, AFIT/GE/ENG/88D-56, School of Engineering, Air Force Institute of TEchnology
(AU), December 1988.

Wai87. Waite, Mitchell, Stephen Prata, and Donald Martin., C Primer Plus, Howard W. Sams
and Company, Indianapolis, Indiana, 1987.

BIB-2

Vita
Capt William E. Koch —Shomy
after graduation, Capt Koch enlisted in the US Air Force. After serving several tours in the Far
East, he was accepted into the Airman’s Education and Commissioning Program from which he
received a B.S.E.E from Texas A&M University. Capt Koch received his commission in the US
Air Force through the Officer Training School. His first assignment after commissioning was to the
Site Activation Task Force (SATAF) for the Ballistic Missile Office at Grand Forks, North Dakota.
Following that assignment, he was assigned to the SATAF at Cheyenne Wyoming where he was a
field engineer for the installation of the Peacekeeper missile system. He remained in Cheyenne until
his acceptance into the AFIT. Following his graduation from AFIT, Capt Koch will be assigned to
the 513" Test Squadron/SAC at Omaha Nebraska.

VITA-1

ety T o
Ny LARIITDTTD

D e e I e
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE e 138
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
IOt A IITOT SN
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for futlic Relezse;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE T . - i ,
Districution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

Y]

T

v

/GCE/ZNG/330-3

N
fat

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(If applicable)
Scnool of EZngineering AFIT/ENG
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Alr Force Institute of Technology
Wrignt-Patterson AFB, OH 45433-6583

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
2535TG/GD (CIGTF) GEN
8¢c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

. ELEMENT NO. | NO NO ACCESSION NO
Holloman AFB, NM 88330

11. TITLE (Include Security Classification)
Development of the Kalman Filter Application and a VHDL Model for the AFIT Floating
Point Application Specific Processor (FPASP) (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)
William E. Koch, B.S., Captain, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT
Thesis FROM TO 198 g December 156

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Computer Architecture, VLSI Microprocessor,
29 01 VHSIC Hardware Design Language (VHDL)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Chairman: Keith R. Jones, Captain, USAF

Instructor
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT ' 21. ABSTRACT SECURITY CLASSIFICATION
O uncLASSIFIEDIUNUIMITED (X1 SAME AS RPT.] DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22c. OFFICE SYMBOL 5
|_Kejth R. Jones, Captain, USAF 513-255-3576 AFIT/ENG .
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

—

UNCLASSIFIED

19. Abstract

The Air Force Institute of Technology (AFIT) is conducting research that will lead to
the development of a Floating Point Application Specific Processor (FPASP). The FPASP
architecture is designed around two independent 32 bit data paths that work in tandem to
support full [IEEE double precision floating point operations, or that can work independently
for 32 bit integer processing. Designed to operate at 25 MHz, the FPASP will be capable of
performing 25 million floating point operations per second.

A rapid prototyping methodology has been developed for the FPASP. In this methodol-
ogv. a user identifies an application that could benefit from a VLSI solution. An algorithm of
the application is translated into FPASP microcode which can then be programmed into the
Laser Programmable Read Only Memory (LPROM) of a blank FPASP. The programmed
FPASP can then be mounted on a circuit card and installed in a host system where it would
function as a hardware accelerator supporting the user application.

This thesis supports AFIT’s continuing development of the FPASP in two areas. In the
first part of this thesis, a user application, the Kalman Filter algorithm, is translated into
FPASP microcode for programming into the FPASP. To support the microcode generation,
verification, and validation of the Kalman Filter microcode program, a software model of the
register transfer level design of the FPASP was developed using the C programming language.
The successful development of the Kalman Filter microcode program demonstrated not only
the FPASP’s abilities to implement a complex algorithm, but also the initial phases of the
rapid prototyping methodology. In the second part of this thesis, the feasibility of using
the VHSIC (Very High Speed Integrated Circuitry) Hardware Design Language (VHDL) to
model a complete system is demonstrated by developing a register transfer level model of
the FPASP. Using the VHDL model of the FPASP, it was possible to validate the design
concepts used in the development of the FPASP, as well as providing support for architectural
enhancements by allowing enhancements to be simulated prior to fabrication changes.

UNCLASSIFIED

